P8-9: Energy and forces and their effects

Lesson sequence

1. Work and power
2. Objects affecting each other
3. Vector diagrams
4. Rotational forces

1. Work and power	
Energy	The capacity to do work.
Joules	The units of energy, symbol = J.
Kilojoules	1000 J , symbol = kJ.
Work done	The energy transferred by a force.
Calculating work done	Work done = force x distance E $=\mathrm{F}$ x d Work done = joules Force = newtons Distance = metres
Power	The rate of energy transfer.
Watts, W	The unit of power: $1 \mathrm{~W}=1$ joule per second
Calculating power	Power = work done / time P = E / t
Power = watts Work done = joules Time = seconds	

 A force that acts when two objects
force touch.

Worked example

In diagram B the ske hang from 0.1 mfon hegran the sacks are hanging from a point 0.1 m from the pivot. They are balanced by a weight of 300 N hanging 1 metre from the pivot and a weight of 20 N hanging 1.2 m from the pivot. Calculate the weight of the sacks.
sum of clockwise moments $=300 \mathrm{~N} \times 1 \mathrm{~m}+20 \mathrm{~N} \times 1.2 \mathrm{~m}$
$=300 \mathrm{~N} \mathrm{~m}+24 \mathrm{~N} \mathrm{~m}=324 \mathrm{~N} \mathrm{~m}$
sum of clockwise moments $=$ sum of anti-clockwise moments

$$
\begin{aligned}
324 \mathrm{~N} \mathrm{~m} & =\text { weight } \times 0.1 \mathrm{~m} \\
\text { weight } & =\frac{324 \mathrm{~N} \mathrm{~m}}{0.1 \mathrm{~m}}=3240 \mathrm{~N}
\end{aligned}
$$

