

Triple Science - Physics

SP8-9 Knowledge organiser

P8-9: Energy and forces and their effects Lesson sequence 1. Work and power Objects affecting each other 2. 3. Vector diagrams **Rotational forces** 4. 1. Work and power The capacity to do work. Energy Joules The units of energy, symbol = J. Kiloioules 1000 J, symbol = kJ. **Work done** The energy transferred by a force. **Calculating** Work done = force x distance workdone E=Fxd Work done = joules Force = newtons Distance = metres Power The rate of energy transfer. Watts, W The unit of power: 1 W = 1 joule per second **Calculating** Power = work done / time power P = E / tPower = watts Work done = joules Time = seconds Worked example

Danny is moving a box weighing 300 N. He pulls it 3 m along a sloping ramp using a force of 200 N. Calculate the work Danny does. $E = F \times d$ $= 200 \text{ N} \times 3 \text{ m}$ The force must be in the direction of the movement.

= 600

2. Objects affecting each other		
Contact	A force that acts when two objects	
force	touch.	

Contact	Normal force, normal reaction force,	Resultant		
force	friction, upthrust, air resistance.	force		
examples		diagram		
Non-	A force that acts at a distance.			
contact		Resolving		
force		forces		
Non-	Gravity, magnetism, electrostatic force.	Componen		
contact		forces		
force		Resolving		
examples		forces		
Action-	If, A applies an action force to B, B	diagram		
reaction	applies a reaction force of same size and			
forces	opposite direction to A.	15 kN force from wind		
Force	The area around an object where its	x		
field	force can affect other objects.			
Magnetic	The area of magnetic force around a			
field	magnet.			
Electric	The area of electrostatic force around an	wind direction		
field	object charged with static electricity.			
Vectors	Arrows that show size and direction.			
force of Earth on Moon force of Moon on Earth mass of Earth = 6.0 × 10 ⁹⁴ kg				
•		Pivot		
	3. Vector diagrams			
Free body				
diagram	an object.	Normal		
Vector	Arrows showing the size and			
diagram	direction of a force – must be drawn	Equilibrium		
arrows	to scale.			
Scale	Diagram drawn on graph paper to find the size of forces.	Lever		
diagram Resultant	The force left over when forces			
force	acting in opposite directions are			
loite	cancelled out.			
L		Gears		

Resultant	Draw correct arrows for two forces,
force	add lines to make a parallelogram.
diagram	Resultant force = the diagonal of the
	parallelogram.
Resolving	Breaking a force up into its horizontal
forces	and vertical components.
Component	The vertical and horizontal forces
forces	that a diagonal force is made from.
Resolving	Draw a correct force arrow, add
forces	arrows for vertical and horizontal
diagram	component forces.

4. Rotational forces			
loment	The turning effect of a force		
	Moment = Force x Perpendicular		
	distance from pivot		
	Moment = Nm		
	Force = N		
	Distance = m		
ivot	the central point, pin, or shaft on		
	which a mechanism turns or		
	oscillates.		
ormal	a line at right angles to a given line		
	or surface.		
quilibrium	a state in which opposing forces or		
	influences are balanced.		
ever	a rigid bar resting on a pivot, used to		
	move a heavy or firmly fixed load		
	with one end when pressure is		
	applied to the other.		
ears	An alternative method for		
	transmitting the rotational effect of		

a force.

Worked example

In diagram B the sacks are hanging from a point 0.1 m from the pivot. They are balanced by a weight of 300N hanging 1 metre from the pivot and a weight of 20N hanging 1.2 m from the pivot. Calculate the weight of the sacks.

sum of clockwise moments = 300 N \times 1 m + 20 N \times 1.2 m

= 300 N m + 24 N m = 324 N m

sum of clockwise moments = sum of anti-clockwise moments

 $324 \text{ N m} = \text{weight} \times 0.1 \text{ m}$ $\text{weight} = \frac{324 \text{ N m}}{0.1 \text{ m}} = 3240 \text{ N}$

