

Triple Science - Physics

SP7 Knowledge organiser

P7: Astronomy

Lesson sequence

- 1. The solar system
- 2. Gravity and orbits
- 3. Life cycle of stars
- Red-shift 4.
- Origin of the Universe 5.

1. The solar system		
Planet	A celestial body moving in an	
	elliptical orbit round a star.	
Natural	Any celestial body in space that	
Satellite	orbits around a larger body.	
Elliptical	The revolving of one object around	
orbit	another in an oval-shaped path	
	called an ellipse.	
Geocentric	(often exemplified specifically by	Exa
model	the Ptolemaic system) is a	Com
	superseded description of the	Syste
	Universe with Earth at the centre.	
	Under the geocentric model, the	We
	Sun, Moon, stars, and planets all	
	orbited Earth.	
Heliocentric	Is a superseded description of the	Ma
model	Universe with the Earth and	
	planets revolve around the Sun at	
	the centre of the Solar System.	Calc
Telescope	An optical instrument that makes	Wei
	distant objects appear magnified	
	by using an arrangement of lenses	
	or curved mirrors and lenses	
Dwarf	A celestial body orbiting a star that	
planet	is massive enough to be rounded	Gra
	by its own gravity. The	field
	gravitational field of a dwarf	stre
	planet is not strong enough to	
	clear the neighbourhood	
Asteroids	Comprised of rock and metal, and	
	are smaller than planets.	

Balls of ice and dust in orbit around the Sun. The orbits of comets are different from those of planets - they are elliptical. A comet's orbit takes it very close to the Sun and then far away again.

Comets

-style question pare and contrast Ptolemy's and Copernicus' models of the Solar (4 marks) m

	2. Gravity and orbits
Weight	A measure of the size of the pull
	of gravity on the object. Measured
	in Newtons (N)
Mass	A measure of how much matter
	there is in an object. Measured in
	Kilograms (Kg)
Calculating	Weight = mass x gravitational field
Weight	strength
	Weight = Newtons (N)
	Mass = Kilograms (Kg)
	Gravitational field strength = N/Kg
Gravitational	Is measured in newtons per
field	kilogram (N/kg). The
strength	Earth's gravitational field
	strength is 9.8 N/kg.
	This means that for each kg of
	mass, an object will experience
	9.8 N of force.

Artificial	A man-made body placed in orbit	
Satellites	round the earth or another planet	
	in order to collect information	
	about it or for communication	
	purposes.	
Velocity	Its speed in a particular direction.	
Vector	A vector describes a movement	
Quantity	from one point to another.	
	A vector quantity has both	
	direction and magnitude (size).	
	satellite	
/	force from	
/	Earth	
/		
/		
	(💿))	
\		

not to scale

3. Life cycle of stars		
Nebula	A massive cloud of dust and gas	
	in space	
Protostar	A contracting mass of gas	
	which represents an early stage	
	in the formation of a star,	
	before nucleosynthesis has	
	begun.	

Fusion	A process where two or more
reactions	nuclei combine to form an
	element with a higher atomic
	number (more protons in the
	nucleus). Fusion releases
	energy
Electromagneti	A wave of
c radiation	the electromagnetic field,
	propagating (radiating) through
	space,
	carrying electromagnetic radian
	t energy.
Main sequence	Most of the stars in the
	Universe are in the main
	sequence stage of their lives, a
	point in their stellar evolution
	where they're converting
	hydrogen into helium in their
	cores and releasing a
	tremendous amount of energy.
Red giant	A very large star of high
	luminosity and low surface
	temperature. Red giants are
	thought to be in a late stage of
	evolution when no hydrogen
	remains in the core to fuel
	nuclear fusion.
White dwarf	Is formed when a low-mass star
	has exhausted all its central
	nuclear fuel and lost its outer
	layers as a planetary nebula.

Triple Science - Physics

Red	A red supergiant is an aging giant
supergiant's	star that has consumed its core's
	supply of hydrogen fuel.
Supernova	A star that suddenly increases
	greatly in brightness because of a
	catastrophic explosion that ejects
	most of its mass.
Black hole	A region of space having a
	gravitational field so intense that
	no matter or radiation can escape.
Neutron	A celestial object consisting of an
star	extremely dense mass of neutrons,
	formed at the core of a supernova,
	where electrons and nuclei are
	compressed together so intensely
	by the force of gravity that protons
	and electrons merge together
	into neutrons.

An increase (or decrease) in the
frequency of sound, light, or other
waves as the source and observer
move towards (or away from) each
other.
The quality of a sound governed by
the rate of vibrations producing it;
the displacement of spectral lines
towards longer wavelengths (the
red end of the spectrum) in
radiation from distant galaxies and
celestial objects.
the wavelength of the light is
stretched, so the light is seen as
'shifted' towards the red part of the
spectrum.
the displacement of the spectrum
to shorter wavelengths in the light
coming from distant celestial
objects moving towards the
observer.
all existing matter and space
considered as a whole; the cosmos.

5. Origin of the Universe		
Big bang	It is the idea that the whole	
theory	Universe and all the matter in it	
	started out as a tiny point of	
	concentrated energy about 13.5	
	billion years ago. The universe	
	expanded from this point and is still	
	expanding.	

Steady	States that the Universe has always
tate	existed, and that the Universe is
heory	expanding and constantly creating
	matter as the Universe expands.
Cosmic	This comes from all directions in
nicrowave	space and has a temperature of
background	about -270 °C. The CMBR is the
СМВ)	remains of the thermal energy from
adiation	the Big Bang, spread thinly across
	the whole Universe.

Exam-style question	\mathbf{O}
Compare and contrast the Big Bang and Steady State theories.	(3 marks)