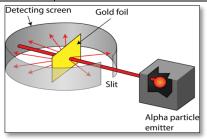


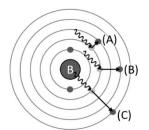
Triple Science - Physics

SP6 Knowledge organiser

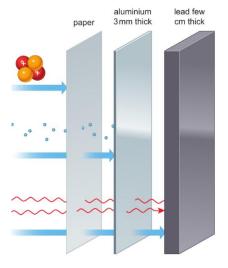

P6: Radioactivity

Lesson sequence

- 1. Atomic models
- 2. Inside atoms
- 3. Electron orbits
- 4. Background radiation
- 5. Types of radiation
- 6. Radioactive decay
- 7. Half-life
- 8. Using radioactivity
- 9. Dangers of radioactivity
- 10. Radioactivity in medicine
- 11. Nuclear Energy
- 12. Nuclear Fission
- 13. Nuclear Fusion


1. Atomic models		
Atom	Smallest stable particle of matter.	
Size of	2.5 x10 ⁻¹⁰ m in diameter	
atoms		
Element	Pure substance made of a single	
	type of atom.	
John	Pictured atoms as tiny hard round	
Dalton	balls, with different elements	
	having atoms of different sizes.	
J.J Thomson	Discovered negative particles	
	smaller than atoms called	
	electrons.	
Plum-	Atoms as a sphere of positively	
pudding	charged matter with negative	
model	electrons scattered throughout it.	
Rutherford's	Fired alpha particles at very thin	
experiment	gold leaf and used a special screen	
	to record where they went.	
Rutherford's	Most alpha particles went straight	
results	through, some scattered (changed	
	path).	

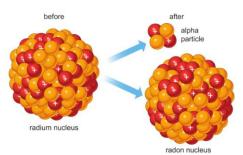
Rutherford's	Scattered particles hit a nucleus.			
explanation	Nucleus must be small because			
	most went straight through			
	most went straight through without hitting it.			

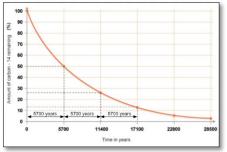


2. Inside atoms				
Subatomic	Particles smaller than atoms:			
particle	protons, neutrons and electrons.			
Protons	+1 charge, mass = 1, located in the			
	nucleus			
Neutrons	0 charge, mass = 1, located in the			
	nucleus			
Electrons	-1 charge, mass = 1/1835, located			
	around nucleus in shells			
Relative	Not the actual mass because no			
mass	units. Protons and neutrons have			
	same relative mass: their mass is 1.			
Nucleons	Subatomic particles found in the			
	nucleus: protons and neutrons.			
Determining	The number of protons determines			
the element	which element an atom is.			
Atomic	The number of protons in an atom.			
number	Also electrons.			
Mass	The number of nucleons (protons			
number	and neutrons) in an atom.			
Number of	Mass number – atomic number			
neutrons				
Isotopes	Versions of an element with the			
	same number of protons, but			
	different number of neutrons.			
Naming	Name followed by mass, e.g.			
isotopes	carbon-13, or symbol preceded by			
	mass, e.g. ¹³ C.			

3. Electron orbits				
Orbits	The shells of electrons around an			
	atom.			
Orbits and	Higher orbit = higher energy			
energy				
Excited	When an electron has absorbed			
electrons	energy and jumped to a higher			
	orbit.			
How to	 When atoms absorb light 			
excite	- When electricity is passed			
electrons	through gases			
	 Strongly heating a material 			
Emitting	Electrons emit light when they drop			
light	back down an orbit. A bigger drop			
	down releases higher energy light.			
Absorbing	Light absorbed at specific			
light	wavelengths corresponds to energy			
	gap in orbits: jumping up one orbit =			
	redder light, jumping up several			
	orbits = bluer light.			
Emission	Pattern of bands of light at specific			
spectrum	wavelengths caused by exciting a			
	gaseous element with electricity.			
Absorption				
spectrum	spectrum caused by a gaseous			
	element absorbing some of the light			
	passed through it.			
Forming	When an electron is given so much			
ions	energy it leaves the atom entirely			
	creating a positive ion.			
lonising	Radiation that causes ionisation:			
radiation	(high energy) UV, x-rays, gamma			
l .	rays.			

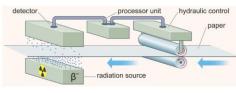
4. Background radiation			
*Background	Low levels of ionising radiation		
radiation	that we are constantly exposed to.		
Radon gas	The biggest source of background		
	radiation: a radioactive gas		
	produced by some rocks in the		
	ground		
Other	Food, hospitals, nuclear power		
sources	industry, space (cosmic rays)		
Artificial	15%: 14% hospitals, 1% nuclear		
sources	industry		
Geiger-	Used to measure radioactivity,		
Müller (GM)	produce a click each time		
tube	radiation passes through it.		
Count-rate	The number of time a GM tube		
	detects radiation each second.		
Measuring	Use a GM tube to take several		
background	readings and then calculate the		
radiation	average (mean).		
Measuring	Measure the source, subtract the		
the activity	background radiation.		
of a source			
Dosimeter	A badge that changes colour in		
	response to radiation exposure.		
Dose	The amount of radiation received.		




Triple Science - Physics

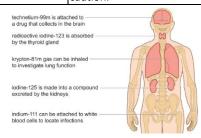
SP6 Knowledge organiser

5. Types of radiation		
Unstable	An atom whose nucleus contains	
atom	too much energy becomes	
	unstable.	
Decay	When an unstable atom releases its	
	excess energy by changing.	
	Releases ionising radiation.	
Alpha	Made of alpha particles: two	
radiation	protons and two neutrons. Symbol:	
	α or ${}_{2}^{4}He$.	
Beta-minus	Made of beta particles: a fast-	
radiation	moving electron. Symbol: β^- or $_{-1}^{0}e$.	
Beta-plus	Made of positrons: particles with	
radiation	same mass as electrons but a	
	positive charge. Symbol: β^+ or 0_1e .	
Gamma	Extremely short wavelength / high	
radiation	frequency / high energy	
	electromagnetic radiation. Symbol:	
	γ.	
Neutron	Fast-moving neutrons. Symbol: n.	
radiation		
Ionising	From most to least is alpha, beta	
power	gamma.	
Penetrating	From most to least is gamma, beta,	
power	alpha.	
Ionising vs	When the radiation ionises an atom	
penetrating	it loses some of its energy. Alpha	
power	ionises particles most easily so	
	loses it energy most quickly, and	
	vice versa for gamma.	
Positrons	the antiparticle or the antimatter	
	counterpart of the electron	



6. Radioactive decay			
Alpha	Atomic number decreases by two,		
decay	mass number decreases by four.		
Beta-	Atomic number increases by one,		
decay	mass number stays the same.		
Beta+	Atomic number decreases by one,		
decay	mass number stays the same.		
Gamma	Atomic number and mass number		
decay	unchanged.		
Neutron	Atomic number stays the same, mass		
decay	number decreases by one.		
Writing	- Write in what you know		
nuclear	- Balance the mass and atomic		
equations	number		
	- Work out the symbols to match		
	the numbers		

7. Half-life			
Half-life	The time taken for half of the		
	undecayed atoms in a sample to		
	decay. Stays constant for each		
	isotope.		
Half-life and	Less stable → shorter half-life		
stability	More stable → longer half-life		
Half-life and	Shorter half-life → more active		
radioactivity	Longer half-life → less active		
Becquerels,	The unit of radioactivity: 1 Bq =		
Bq	one decay per second.		
Half-life	x-axis = time, y-axis = radioactivity.		
graph	The line curves downwards but		
	never touches the x-axis.		

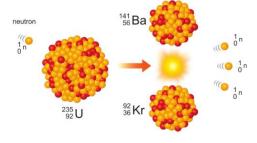

Determining	Pick two points on the y-axis, one		
half-life	half of the other, trace along to		
from a	the line and down to the time.		
graph	Half-life is the difference in the		
	time.		
Calculations	 Divide time by half-life to give 		
with half-	a number of half-lives		
life	 Forwards in time: halvings 		
	- Back in time: doublings		

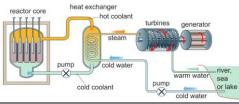
8. Using radioactivity				
Irradiated	expose (someone or something) to			
	radiation.			
Sterilised	make (something) free from			
	bacteria or other living			
	microorganisms.			
Radioactive	A chemical compound in which one			
tracer	or more atoms have been replaced			
	by a radioisotope.			
Cancer	A condition where cells in a specific			
	part of the body grow and			
	reproduce uncontrollably.			

9. Dangers of radioactivity				
Mutations	DNA	DNA damage caused by ionising		
	radi	radiation, can lead to cancer.		
Repairing	Cell	Cells contain proteins that can		
damage	repair DNA damage as long as			
	the radiation dose is low			
	eno	enough.		
Minimising	-	Wear protective clothing		
radiation risk	-	Handle with tongs		
	-	Don't point at people		
	-	Limit time		
	-	Use protective shielding		
	-	Wear dosimeter badges		

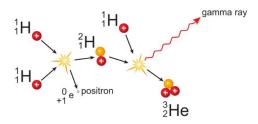
Nuclear power	There is a small chance of		
risks	accidents causing radioactive		
	sources to escape		
Irradiation	Exposure to radiation, stops		
	when the source of radiation is		
	removed.		
Contamination	When particles of radioactive		
	substances are on or in the		
	body.		
Risks in	Using radioactivity carries		
perspective	serious risks, but so do many		
	other things, so it is safe to use		
	as long as it is treated with		
	caution.		

10. Radioactivity in medicine	
Gamma	A device used to
Cameras	image gamma radiation emitting
	radioisotopes, a technique known
	as scintigraphy.
Tumours	A swelling of a part of the body,
	generally without inflammation,
	caused by an abnormal growth of
	tissue, whether benign or
	malignant.
PET Scanner	Detect the radiation given off by a
	substance injected into your arm
	called a radiotracer as it collects in
	different parts of your body.
Internal	Giving radiotherapy from inside
radiotherapy	your body.
External	Giving radiotherapy from outside
radiotherapy	your body.


Triple Science - Physics


:	11. Nuclear energy	
Nuclear	A process in which the nucleus	
fission	of an atoms split into two or	
	more smaller, lighter nuclei,	
	releasing a very large amount of	
	energy.	
Nuclear fusion	A process in which two or mor	
	nuclei are combined to form one	
	of more different atomic nuclei.	
	Energy is produced as the atoms	
	collide	
Non-	Not able to be renewed.	
renewable		
Fossil fuels	A natural fuel such as coal, oil or	
	gas, formed from the remains of	
	living organisms.	
Climate	A change in global or regional	
change	climate patterns,	
Decommission	Make (a nuclear reactor)	
	inoperative and dismantle it	
	safely.	

	Exam-style question	
Compare nuclear and fossil fuelled power stations in terms of any		of any
	pollution they cause.	(3 marks)


12. Nuclear fission	
Daughter	The two nuclei that result from the
nuclei	division of a single nucleus.
Chain	A series of events, each caused by
reaction	the previous one.
Nuclear	An apparatus or structure in which
reactor	fissile material can be made to
	undergo a controlled, self-sustaining
	nuclear reaction with the
	consequent release of energy.
Fuel rods	A rod-shaped fuel element in a
	nuclear reactor.
Reactor	The portion of a
core	nuclear reactor containing the
	nuclear fuel components where the
	nuclear reactions take place and the
	heat is generated.

Moderator	A material which slows down the
	neutrons.
	a rod of a neutron-absorbing
rods	substance used to vary the output
	power of a nuclear reactor.

13. Nuclear fusion	
Electrostatic	Repulsion of electrostatically
repulsion	charged bodies for each other.
Fusion	(also called a fusion power plant or
reactors	thermonuclear reactor). A device
	to produce electrical power from
	the energy released in a nuclear
	fusion reaction.

