

Triple Science - Physics

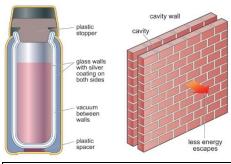
SP3 Knowledge organiser

P3: Energy

Lesson sequence

- 1. Storing and transferring energy
- 2. Energy efficiency
- 3. Insulation
- 4. Stored energy
- 5. Non-renewable energy resources
- 6. Renewable energy resources

1. Storing	and transferring energy
Energy	The capacity to do work.
Joules	The units of energy, symbol =
	J.
Kilojoules	1000 J, symbol = kJ.
Thermal energy	Energy stored on hot objects.
Kinetic energy	Energy stored in moving
	objects.
Chemical energy	Energy stored in chemicals
	such as fuels.
Nuclear energy	Aka atomic energy. Energy
	stored in the nucleus of
	atoms.
Gravitational	Energy stored in objects based
potential energy	on how high they are.
Elastic potential	Aka strain energy. Energy
energy	stored in bent or stretched
	objects.
Other forms of	Light, sound, electrical.
energy	
First law of	Energy cannot be created or
thermodynamics	destroyed, just transferred
	from one form to another.
Energy transfers	Say what form the energy
	starts as <i>and</i> what it becomes.
Sankey diagram	Shows energy transfers. The
	thickness of the arrow relates
	to the amount of energy.


2. Energy efficiency		
Dissipation	The way energy spreads out,	
	becoming less useful as it does.	
Wasted	Energy that is transferred into forms	
energy	that can't be used.	
Friction	Causes energy loss as heat when	
	two surfaces rub together.	
Lubrication	Allows surfaces to move smoothly,	
	reduces energy loss from friction.	
Electrical	Causes wires to heat up, wasting	
resistance	electrical energy.	
Calculating	Efficiency	
efficiency	_ useful energy transferred	
	total energy transferred	
Energy	Efficiency is between 0 and 1. 1 = no	
efficiency	energy wasted, 0 = all energy	
numbers	wasted.	

3. Insulation	
Convection	Heat transfer caused when hot
	fluids (gas or liquid) rise because
	they are less dense.
Conduction	Heat transfer through solids
	caused by vibrating particles
	bumping into each other.
Radiation	Heat transfer by infrared radiation
	which heats objects up when they
	absorb it.
Insulation	Materials that contain lots of tiny
	air pockets that prevent heat loss
	by conduction.
Thermal	A measure of how well a material
conductivity	conducts heat.

Draught- proofing	Sealing gaps around doors and windows to prevent heat loss by convection.
4. Stored energy	

	4. Stored energy	
Calculating kinetic energy	$KE = \frac{1}{2}mv^2$ Where 'KE' is kinetic energy in J, 'm' is mass in kg, 'v' is velocity in m/s.	
Calculating v from KE	$v = \sqrt{\frac{2KE}{m}}$	
Gravitational	The strength of gravity. Different	
field	on different planets. On earth: 10	
strength	N/kg.	
Calculating	GPE = mgh	
gravitational	Where 'GPE' is gravitational	
potential	potential energy in J, 'm' is mass	
energy	in kg, 'g' is gravitational field	
	strength in N/kg, 'h' is height	
	change in m.	

5. No	5. Non-renewable energy resources	
Fossil fuels	Coal, oil, natural gas. All are non-	
	renewable.	
Non-	A resource that will one day run out	
renewable	because it is being used faster than	
resource	it is being made.	
Harm from	Carbon dioxide gas is released which	
burning	causes global warming. Sulfur	
fossil fuels	dioxide is released which causes	
	acid rain.	

Renewable	A resource will not run out.
resource	
Nuclear	Electricity generated from nuclear
power	fuels such as uranium.
Nuclear	C Lasts a long time, releases no
power	carbon dioxide
pros and	Produces very harmful waste,
cons	expensive to decommission,
	although rare, accidents are very
	dangerous.

6. Rene	wable energy resources
Wind power	Large turbines spun by the
	wind.
	© No CO₂
	Lots needed, ugly?, no wind
	no power
Solar power	Solar cells turn sunlight to
	electricity.
	© No CO₂
	⊠No sun no power, need lots
	of space, not suitable for all
	countries
Tidal power	Uses water movement from
	tides to spin turbines
Tidal barrage	A damn built across an estuary
	that fills up when tide goes in.
	Huge amounts of energy,
	no CO ₂
	Destroys important mudflat
	habitats
Hydroelectricity	
	valley, water released from the
	damn spins turbines.
	© Lots of energy, no CO₂
	Destroys habitat by flooding
Biofuels	Fuels made from recently plant
	or animal matter, often waste.
	Carbon neutral
	⊗ Needs a lot of land,
	increases food prices

Triple Science - Physics

SP3 Knowledge organiser

Carbon neutral

When burning a fuel releases the same CO_2 it absorbed when it was growing, so there is no CO_2 increase.