I need to do I know Date **Objectives Tracker Sheet** more work Lesson this well covered on this P2.14 Recall Newton's first law and use it in the following situations: (a) Where the resultant force on SP2a Resultant a body is zero, i.e. the body is forces moving at a constant velocity or is at rest (b) Where the resultant force is not zero, i.e. the speed and/or direction of the body changes. P2.14 Recall Newton's first law and use it in the following situations: (a) Where the resultant force on a body is zero, i.e. the body is moving at a constant velocity or is at rest (b) Where the resultant force is not zero, i.e. the speed and/or SP2b Newton's direction of the body change(s) First Law P2.20 **H** Explain that an object moving in a circular orbit at constant speed has a changing velocity (qualitative only). P2.21 H Explain that for motion in a circle there must be a resultant force known as a centripetal force that acts towards the centre of the circle P2.16 Define weight, recall and use the equation: weight (newton, N) = mass (kilogram, kg) × gravitational field strength (newton per kilogram, N/kg), W $= m \times g.$ SP2c Mass and weight P2.17 Describe how weight is measured. P2.18 Describe the relationship between the weight of a body and the gravitational field strength. P2.15 Recall and use Newton's Second Law as: force (newton, N) = mass (kilogram, kg) × SP2d Newton's acceleration (metre per second squared, m/s2), $F = m \times a$ Second Law P2.22 H Explain that inertial mass is a measure of how difficult it is to change the

SP2: Motion and Forces (Paper 1)

		Ro i belence.	Motion and force
	velocity of an object (including from rest) and know that it is defined as the ratio of force over acceleration		
SP2d Investigating acceleration – Core practical	P2.19 Investigate the relationship between force, mass and acceleration by varying the masses added to trolleys.		
SP2e Newton's Third Law	 P2.23 Recall and apply Newton's Third Law to equilibrium situations P2.23 H Recall and apply Newton's Third Law both to equilibrium situations and to collision interactions and relate it to the conservation of momentum in collisions. 		
SP2f Momentum	 P2.23 H Recall and apply Newton's Third Law both to equilibrium situations and to collision interactions and relate it to the conservation of momentum in collisions. P2.24 H Define momentum, recall and use the equation: momentum (kilogram metre per second, kg m/s) = mass (kilogram, kg) × velocity (metre per second, m/s) p = m × v. 		
	P2.25 H Describe examples of momentum in collisions. P2.26 H Use Newton's Second Law as: force (newton, N) = change in momentum (kilogram meter per second, kg m/s) / time (second, s) $F = (mv - mu) / t$		
SP2g Stopping distances	 P2.27 Explain methods of measuring human reaction times and recall typical results. P2.28 Recall that the stopping distance of a vehicle is made up of the sum of the thinking distance and the braking distance. P2.29 Explain that the stopping distance of a vehicle is affected by a range of factors including: (a) the mass of the vehicle 		
	(b) the speed of the vehicle (c) the driver's reaction time		

			Motion and Iorce
	 (d) the state of the vehicle's brakes (e) the state of the road (f) the amount of friction between the tyre and the road surface. P2.30 Describe the factors 		
	affecting a driver's reaction time including drugs and distractions		
SP2h Braking distance and energy	P2.32P Estimate how the distance required for a road vehicle to stop in an emergency varies over a range of typical speeds. P2.33P Carry out calculations		
	on work done to show the dependence of braking distance for a vehicle on initial velocity squared (work done to bring a vehicle to rest equals its initial kinetic energy).		
SP2i Crash hazards	P2.26 H Use Newton's Second Law as: force (newton, N) = change in momentum (kilogram meter per second, kg m/s) / time (second, s) F = (mv – mu) / t. P2.31 H Explain the dangers		
	caused by large decelerations and estimate the forces involved in typical situations on a public road.		