

Triple Science - Physics

SP2 Knowledge organiser

P2: Forces and motion

Lesson sequence

- Resultant forces 1.
- 2. Newton's first law
- 3. Mass and weight
- Newton's second law 4.
- Core practical investigating 5. acceleration
- 6. Newton's third law
- 7. Momentum
- 8. Stopping distances
- Braking distance and energy 9.
- 10. Crash hazards (car safety)

1. Resultant forces		
Scalar	A quantity with magnitude (but no	
quantity	direction).	-
Vector	A quantity with magnitude and	
quantity	direction.	
Force	Arrows can be used to represent	
arrows	forces:	
	- Direction = direction of force	
	 Length = size of force 	
Resultant	The force left over when forces	
force	acting in opposite directions are	
	cancelled out.	
Calculating	Subtract the total force in one	
resultant	direction from the total force in the	
force	other direction.	
Balanced	When the resultant force is zero	
forces	(because forces acting in opposite	0
	directions are the same size).	f
Unbalanced	When the resultant force is non-	
forces	zero (because there is more force in	
	one direction than another).	

2. Newton's first law			
Newton's first	An object will move at the same		
aw of motion	speed and direction unless it		
	experiences a resultant force.		
he effect of	Resultant forces cause		
esultant	acceleration: speeding up,		
orces	slowing down or changing		
	direction		
ffect of	Forces make you start moving,		
orces on	stop moving or change direction,		
notion	they are not needed to keep you		
	moving!		
Circular	Moving in a circle is a type of		
notion	acceleration because you are		
	changing velocity (your direction		
	changes even if your speed does		
	not).		
Centripetal	A force acting towards the centre		
orce	of a circle that enables objects to		
	move in a circle.		
ources of	Gravity – keeps the Earth orbiting		
entripetal	the sun		
orce	Tension – lets a bucket swing in		
	circles on a rope		
	Friction – keeps cars turn round a		
	roundabout		

	3. Mass and weight
Mass	The quantity of matter in an
	object is made of. Units =
	kilograms, kg.
Weight	A force caused by gravity pulling
	downward on an object. Units =
	newtons, N.
Force meter	An instrument for measuring
	forces. They usually involve a
	spring that stretched more the
	more the force.
Gravitational	The strength of gravity, which is
field strength	different on different planets.
	Units = newtons per g=kilogram,
	N/kg.
Gravitational	10 N/kg
field strength	
on Earth	
Calculating	Weight = mass x gravitational
weight	field strength
	W = m x g
	Weight = N
	Mass = kg
	Gravitational field strength =
	N/kg
Air resistance	A force greater by the air
	pushing against you as you
	move. Faster movement $ ightarrow$
	greater air resistance.
Motion whilst	Accelerate until the air
falling	resistance is equal to the weight;
	now there is no resultant force
	so speed stays constant.

so just after jumping the air resistance is much smaller than her weight. The large resultant force makes her accelerate downwards. weight stays the same. The resultant force is smaller, so she is still accelerating, but not as much

resistance balances her weight. She continues to fall at the same

5. Core practical – investigating acceleration		
Aim	To investigate how changing force	
	changes acceleration.	
Setup	A trolley on a ramp with 90 g	
	masses. 10 g mass hanger attached	
	to trolley via a string over a pulley.	
Data	Release the trolley, use light gates	
collection	to measure the acceleration.	
Variations	Move 10 g of mass from the trolley	
	to the mass hanger each time.	
Independent	The force: each 10 g mass = 0.1 N	
variable	force	
Results	Ore mass \rightarrow more force \rightarrow greater	
	acceleration.	

	and force	
Newton's	For every action force there is an equal	calculations
third law	but opposite reaction force.	
Action	The force you push or pull with.	
force		
Reaction	A force of the same size but opposite	
force	direction to an action force.	
Action- If, A applies an action force to B, B		Conservatio
reaction	applies a reaction force of same size	of
forces	and opposite direction to A.	momentum
Action-	Similarities: same sizes, opposite	٨
reaction	directions	
vs		22
balanced	Differences: balanced forces act on	
forces	same object, action-reaction act on	((((
	different objects	m = 20 kg
		I II Long

Triple Science - Physics

E.g. kicking a ball: the foot pushes the ball, the ball pushes back on the foot. 8. Stopping distances Stopping The distance travelled from when a distance hazard is seen to when you fully sto Thinking The distance travelled from when a distance hazard is seen to when you brake. force from ground on dog Braking The distance travelled from when yo distance brake to when you fully stop. Calculating Stopping distance = thinking distance stopping + braking distance force from force from dog on rope rope on dog distance force from dog on ground Thinking Slower reactions = greater thinking distance distance and 7. Momentum reaction The tendency of an object to keep time moving. Higher speed, tiredness, illness, drug Thinking Momentum = mass x velocity field distractions, old age distance strength increased p = m x vby... Braking Higher speed, poor brakes, poor Momentum = kg m/s distance tyres, wet/icy/gravelly road, downhi Mass = kg increased heavier load velocity = N/kg by Force = change in momentum / F = (mv - mu)/t20 6 m 6 m = 12 metres or 3 car leng Force = N Mass = kg 30 mph 9 m 🔰 14 m Velocity = m/s = 23 metres or 6 car leng Time = s 40 mph Conservation Total momentum before and after 12 m 24 m a collision is the same. = 36 metres or 9 car lend 50 15 m 38 m mph = 53 metres or 13 car leng 60 mph 18 m 55 m = 73 metres or 18 car lend (() 70 21 m 75 m mph ((((20 kg /20 kg = 96 metres or 24 car lend v = v =Average car length = 4 metre thinking distance 3 m/s 3 m/s braking distance after collision

9.	Braking distance and energy	
Work	Work done = force x distance moved	
done	in the direction of the force	
	Work done = J	
	Force = N	
	Distance = m	
Kinetic	Kinetic energy = 0.5 x mass x velocity	
energy		
	Kinetic energy = J	
	Mass = Kg	
	Velocity = m/s	
Exam-style qu	estion	
4 car is that is me Explain what its l Include any assu	oving at 10 m/s travels 10 metres while braking to a sto oraking distance would be if it were travelling at 20 m/s mptions you have made in your answer. (4 mar	
1	0. Crash hazards (car safety)	
Crash Crashes involve large deceleration		
danger	creating large forces which can injur	
	you.	
Car safety	Increase the time a collision takes,	
features	reducing deceleration and forces.	
Three car	Crumple zones, (stretchy) seat belts,	
safety	air bags	
features		
Collision	Greater momentum change \rightarrow	
forces	greater force	
Calculating	Force = change in momentum / time	
collision	F = (mv - mu)/t	
forces	Force - N	
	Velocity - m/s	
	Time = c	
Worked exan	nple	
A 1500 kg car is It comes to a st	travelling at 15 m/s (just over 30 mph) when it hits a wall op in 0.07 seconds. What is the force acting on the car?	
force $=\frac{1500}{2}$	kg × 0 m/s – 1500 kg × 15 m/s 0.07 s	
$=\frac{-225}{0.07}$	00	
= -3214	429 N	
The negative sig	on shows that the force is in the opposite direction to	

the original motion.

SP2 Knowledge organiser

6 m/s before collision

v =

20 kg

v =

0 m/s

Action-

forces -

reaction

collisions

Action-reaction forces

Momentum

Calculating

momentum

Momentum

time