

# **Triple Science - Physics**

### SP14-15 Knowledge organiser

A very small hot object has less

cold object, because thermal energy is the energy of all the

Temperature, mass, material.

The amount of energy required

to increase the temperature of 1

The amount of energy required

its boiling point) from liquid to

its melting point) from solid to

As you heat a substance, the

The temperature stays constant while the liquid is

form a gas

boiling. The particles are

escaping from the liquid to

temperature rises steadily, with flat sections on the graph first as

to change 1 kg of a substance (at

kg of a substance by 1 °C.

particles added up.

thermal energy than a very large

Temperature

vs thermal

energy

Thermal

depends on...

Specific heat

Specific latent

gas.

liquid.

das

Der

Ten

**Specific latent** The amount of energy required

heat of melting to change 1 kg of a substance (at

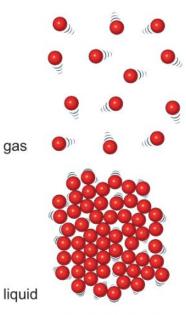
evaporation

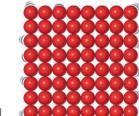
Heating curve

capacity, Q

energy

heat of


#### P14-15: Particle model, forces and matter


#### Lesson sequence

- 1. Particles and density
- Core practical investigating densities
- 3. Energy and state changes
- 4. Energy calculations
- 5. Core practical investigating water
- 6. Gas temperature and pressure
- 7. Gas pressure and volume
- 8. Bending and stretching
- 9. Extension and energy transfers
- 10. Core practical investigating springs
- 11. Pressure in fluids
- 12. Pressure and upthrust

| 1. Particles and density       |                                                    |  |  |  |  |
|--------------------------------|----------------------------------------------------|--|--|--|--|
| State of Solid, liquid or gas. |                                                    |  |  |  |  |
| matter                         | matter                                             |  |  |  |  |
| Changes of                     | <b>nges of</b> Melting: solid $\rightarrow$ liquid |  |  |  |  |
| state                          | Freezing: liquid → solid                           |  |  |  |  |
|                                | Evaporation: liquid $\rightarrow$ gas              |  |  |  |  |
|                                | Condensation: gas $ ightarrow$ liquid              |  |  |  |  |
|                                | Sublimation: solid $\rightarrow$ gas               |  |  |  |  |
|                                | Deposition: gas $ ightarrow$ solid                 |  |  |  |  |
| Solid                          | Particles touching, neatly ordered,                |  |  |  |  |
|                                | vibrating around a fixed point.                    |  |  |  |  |
| Liquid                         | iquid Particles touching, random order,            |  |  |  |  |
|                                | moving slowly.                                     |  |  |  |  |
| Gas                            | Particles widely spaced, random                    |  |  |  |  |
|                                | order, moving fast.                                |  |  |  |  |
| Forces of                      | Forces holding particles close to each             |  |  |  |  |
| attraction                     | other: strong in solids, weak in                   |  |  |  |  |
|                                | liquids, gone in gases.                            |  |  |  |  |

| Changing     | Increasing temperature gives                  |  |  |  |
|--------------|-----------------------------------------------|--|--|--|
| state        | particles more (kinetic) energy,              |  |  |  |
|              | allowing them to break the forces of          |  |  |  |
|              | attraction.                                   |  |  |  |
| Density      | The mass of 1 cm <sup>3</sup> of a substance. |  |  |  |
|              | Units = kg / m <sup>3</sup>                   |  |  |  |
| Density      | Solid > liquid > gas, due to particles        |  |  |  |
| and state    | being closer together.                        |  |  |  |
| Density      | Density = mass / volume                       |  |  |  |
| calculations | ρ = m / v                                     |  |  |  |
|              |                                               |  |  |  |
|              | Density = kilograms per cubic metre           |  |  |  |
|              | Mass = kilograms                              |  |  |  |
|              | Volume = metres cubed                         |  |  |  |





| 2. Core practical – investigating densities |                                         |  |  |  |  |
|---------------------------------------------|-----------------------------------------|--|--|--|--|
| Aim                                         | To measure the density of some          |  |  |  |  |
|                                             | solids and liquids                      |  |  |  |  |
| Density of                                  | Place a measuring cylinder on a         |  |  |  |  |
| liquids                                     | balance and zero it. Add some liquid    |  |  |  |  |
|                                             | and record the mass and volume,         |  |  |  |  |
|                                             | Repeat with different liquids.          |  |  |  |  |
| Density of                                  | Record the mass of a solid object. Fill |  |  |  |  |
| solids                                      | a displacement can and place the        |  |  |  |  |
|                                             | object in it, catching the water in a   |  |  |  |  |
|                                             | measuring cylinder. Record the          |  |  |  |  |
|                                             | volume collected.                       |  |  |  |  |
| Density                                     | Divide the mass by the volume.          |  |  |  |  |
| calculations                                |                                         |  |  |  |  |

40

3. Energy and changes of state

its particles are moving.


energy of the particles.

Thermal

motion

energy and

Temperature



The volume of the water displaced by an object is the same as the volume of the object.

The hotter an object is, the faster

A measure of the average kinetic

melting point -

boiling point

| quid |                                                                                                                                                                                                     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| olid | The temperature stays constant<br>while the solid is melting. The<br>substance is still being heated but<br>the extra energy is making the<br>particles break away from their<br>fixed arrangement. |

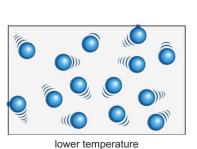
Time



## **Triple Science - Physics**

Elasticity

and force


Extension

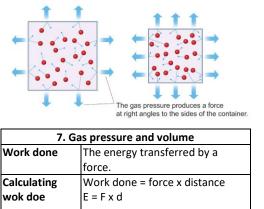
size

## SP14-15 Knowledge organiser

| 4. Energy calculations |                                  |  |  |
|------------------------|----------------------------------|--|--|
| Temperature            | Thermal energy change = mass x   |  |  |
| change                 | specific heat capacity x         |  |  |
| calculations           | temperature change               |  |  |
|                        | $\Delta Q = m x c x \Delta T$    |  |  |
|                        | Thermal energy change = J        |  |  |
|                        | Mass = kg                        |  |  |
|                        | Specific heat capacity = J / kg  |  |  |
|                        | Temp change = <sup>o</sup> C     |  |  |
| State change           | Thermal energy = mass x specific |  |  |
| calculations           | latent heat                      |  |  |
|                        | Q = m x L                        |  |  |
|                        | Thermal energy = J               |  |  |
|                        | Mass = kg                        |  |  |
|                        | Specific latent heat = J / kg    |  |  |
|                        |                                  |  |  |

| 5. Core      | e practical – investigating water     |
|--------------|---------------------------------------|
| Aim          | To investigate the temperature        |
|              | change as ice melts, and measure      |
|              | specific heat capacity of water.      |
| Melting ice  | Place some ice in a boiling tube,     |
|              | measure the temperature then place    |
|              | the tube in a beaker of hot water     |
|              | from a kettle, kept warm by Bunsen,   |
|              | and measure temperature every 60s     |
|              | until fully melted.                   |
| Melting ice  | Temperature rises steadily at first   |
| results      | but levels out during melting.        |
| ыс           | Place a polystyrene cup on a balance, |
|              | zero it, mostly fill with water then  |
|              | measure the mass. Measure the         |
|              | temp. Use an immersion heater         |
|              | connected to a joulemeter to warm     |
|              | the water for 5 minutes and measure   |
|              | the temperature again.                |
| SHC          | SHC = energy used / (mass x temp      |
| calculations | change)                               |





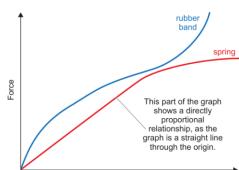



higher temperature

| 6. Gas temperature and pressure |                                          |  |  |  |
|---------------------------------|------------------------------------------|--|--|--|
| Temperature                     | A measure of the average kinetic         |  |  |  |
|                                 | energy of the particles.                 |  |  |  |
| Gas pressure                    | Every time a gas particle hits a         |  |  |  |
|                                 | surface it pushes with a small force;    |  |  |  |
|                                 | gas pressure is the sum of these         |  |  |  |
|                                 | forces.                                  |  |  |  |
| Increasing                      | Gas pressure increases with              |  |  |  |
| gas pressure                    | temperature and number of                |  |  |  |
|                                 | particles.                               |  |  |  |
| Pascals, Pa                     | The unit of pressure: $1 Pa = 1 N / m^2$ |  |  |  |
| Absolute                        | The coldest possible temperature         |  |  |  |
| zero, OK                        | when particles completely stop           |  |  |  |
|                                 | moving.                                  |  |  |  |
| Kelvins                         | Measures temperatures relative to        |  |  |  |
|                                 | absolute zero: 0 K = absolute zero.      |  |  |  |
| Kelvins and                     | A kelvin is the same size as a degree    |  |  |  |
| degrees                         | Celsius, but 0 K = -273°C, 273 K = 0     |  |  |  |
| Celsius                         | °C                                       |  |  |  |

| Converting K        | Subtract 273                        | Direct     | Doubling A doubles B, a graph of B vs |
|---------------------|-------------------------------------|------------|---------------------------------------|
| to <sup>o</sup> C   |                                     | proportion | A goes through the origin.            |
| Converting          | Add 273                             | Metal      | The relationship between force and    |
| <sup>o</sup> C to K |                                     | spring     | extension is linear and directly      |
| Gas pressure        | Gas pressure is directly            | extension  | proportional, but becomes non-linear  |
| and Kelvins         | proportional to temperature in K.   |            | with large forces.                    |
| Absolute            | Pressure is 0 Pa at 0 K because the | Rubber     | The relationship between force and    |
| zero and gas        | particles are not moving.           | band       | extension is non-linear.              |
| pressure            |                                     | extension  |                                       |




| Work done = joules                     |  |  |
|----------------------------------------|--|--|
| Force = newtons                        |  |  |
| Distance = metres                      |  |  |
| Volume is the quantity of three-       |  |  |
| dimensional space enclosed by a        |  |  |
| closed surface                         |  |  |
|                                        |  |  |
| . Bending and stretching               |  |  |
| When something returns to its          |  |  |
| original shape after force is applied. |  |  |
| When something doesn't return to its   |  |  |
| original shape after force is applied. |  |  |
|                                        |  |  |

Some objects are elastic when a

small force is applied, but inelastic when a large force is applied.

The increase in length of a spring

when a force is applied.



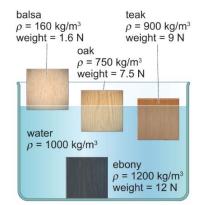
Extension

| 9. Extensions and energy transfers |                                        |  |  |
|------------------------------------|----------------------------------------|--|--|
| Spring                             | A measure of the strength of a         |  |  |
| constant                           | spring: units = N/m                    |  |  |
| Spring                             | The spring constant is the gradient of |  |  |
| constant                           | a graph of force vs extension.         |  |  |
| and graphs                         |                                        |  |  |
| Force and                          | Force = spring constant x extension    |  |  |
| extension                          | $F = k \times X$                       |  |  |
| calculations                       |                                        |  |  |
|                                    | Force = N                              |  |  |
|                                    | Spring constant = N/m                  |  |  |
|                                    | Extension = m                          |  |  |
| Extension                          | Force is higher, spring constant is    |  |  |
| is greater                         | lower                                  |  |  |
| when                               |                                        |  |  |
| Work done                          | The energy transferred by a force.     |  |  |
|                                    |                                        |  |  |



# **Triple Science - Physics**

| Spring       | nergy transferred in stretching = ½ x    |   |      |
|--------------|------------------------------------------|---|------|
| energy       | spring constant x extension <sup>2</sup> |   |      |
| calculations | $E = \frac{1}{2} \times k \times X^2$    |   |      |
|              |                                          |   |      |
|              | Energy = J                               | P | ress |
|              | Spring constant = N / m                  |   |      |
|              | Extension = m                            |   |      |
| 10. Core     | e practical – investigating springs      |   |      |
| Aim          | To explore how increasing the            |   |      |
|              | force affects the extension of a         |   |      |
|              | spring.                                  | N | lorn |
| Setup        | Suspend a spring or rubber band          |   |      |
|              | from a clamp stand and fix a             | A | tmo  |
|              | metre ruler in place so the '0' is       |   | ress |
|              | level with the bottom of the             | • |      |
|              | spring/band.                             | D | ens  |
| Measureme    | nts Hang a 100 g (1 N) mass from the     |   |      |
|              | rubber band / spring, and                |   |      |
|              | measure the extensions. Repeat           |   | at   |
|              | up to 1 kg.                              |   | a    |
| Variations   | Repeat with different springs.           |   | d    |
| Calculations | Calculate spring constant as:            |   | d    |
|              | Spring constant = force /                |   | g    |


| Spring constant = force /<br>extension |  |  |  |                                       |
|----------------------------------------|--|--|--|---------------------------------------|
|                                        |  |  |  | Pre<br>liqu<br>Up <sup>1</sup><br>Dis |
| 11. Pressure in fluids                 |  |  |  |                                       |

| ds                           | A fluid is a substa                                           | ince that                        |
|------------------------------|---------------------------------------------------------------|----------------------------------|
|                              | continually defor                                             | ms (flows) under                 |
|                              | an applied shear                                              | stress, or                       |
|                              | external force.                                               |                                  |
| ssure                        | Pressure is a measure of the force                            |                                  |
|                              | on a unit of surfa                                            | •                                |
|                              | the force is norm                                             |                                  |
|                              | Pressure, force a                                             |                                  |
|                              | relayed by this ec                                            |                                  |
|                              | pressure (Pa) = $\frac{\text{force normalized}}{\text{area}}$ | rea of surface (m <sup>2</sup> ) |
| mal                          | A line at right angles to a given                             |                                  |
|                              | line or surface.                                              |                                  |
| nospheric                    | The pressure exerted by the                                   |                                  |
| ssure                        | weight of the atn                                             |                                  |
| •                            | at sea level is abo                                           |                                  |
| isity                        | The degree of compactness of a                                |                                  |
|                              | substance.                                                    |                                  |
|                              |                                                               | 100.000 5                        |
| atmospheric pressure         |                                                               | 100 000 Pa                       |
| density of sea water         |                                                               | 1030 kg/m <sup>3</sup>           |
| density of fresh water       |                                                               | 1000 kg/m <sup>3</sup>           |
| gravitational field strength |                                                               | 10 N/kg                          |
|                              |                                                               |                                  |

| 1  | 2. Pressure and upthrust    |
|----|-----------------------------|
| in | The pressure at any point i |

| Pressure in<br>iquids | The pressure at any point in a fluid depends on the wight of the fluid                                                                              |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                       |                                                                                                                                                     |  |
|                       | above.                                                                                                                                              |  |
|                       | pressure due to a = height of × density × gravitational field<br>column of liquid column of liquid strength<br>(Pa) (m) (kg/m <sup>3</sup> ) (N/kg) |  |
|                       | $P = h \times \rho \times g$                                                                                                                        |  |
| Jpthrust              | The upward force that a liquid or                                                                                                                   |  |
|                       | gas exerts on a body floating in it.                                                                                                                |  |
| Displaced             | s an object's change in position,                                                                                                                   |  |
|                       | only measuring from its starting                                                                                                                    |  |
|                       | position to the final position.                                                                                                                     |  |

| Pressure   | A manometer measures                 |
|------------|--------------------------------------|
| difference | the pressure acting on a column of   |
|            | fluid. It is made from a U-shaped    |
|            | tube of liquid in which              |
|            | the difference in pressure acting on |
|            | the two straight sections of the     |
|            | tube causes the liquid to reach      |
|            | different heights in the two arms.   |



#### Worked example

Look at photo D. There is an average of 0.75 m depth between the top and bottom surfaces of the shark.

a Calculate the difference in pressure between the top and bottom surfaces.

pressure difference = depth difference ×  $\rho$  × g

 $= 0.75 \, \text{m} \times 1030 \, \text{kg/m}^3 \times 10 \, \text{N/kg}$ 

 $= 7725 \, \text{N/m}^2$ 

**b** This pressure difference will produce a net upthrust. Calculate the size of this force. The horizontal area of the bottom of the shark is 8 m<sup>2</sup>. force = pressure difference  $\times$  area = 7725 N/m<sup>2</sup>  $\times$  8 m<sup>2</sup> = 61 800 N