SP14: Particle Model (Paper 2)

SP15: Forces and Matter (Paper 2)

Lesson	Objectives Tracker Sheet	Date covered	I know this well	I need to do more work on this
SP14a Particles and density	P14.1 Use a simple kinetic theory model to explain the different states of matter (solids, liquids and gases) in terms of the movement and arrangement of particles.			
	P14.2 Recall and use the equation: density (kilograms per cubic metre, $\mathrm{kg} / \mathrm{m} 3$) = mass (kilograms, kg) / volume (cubic metres, m3). $\rho=\mathrm{m} / \mathrm{V}$			
	P14.4 Explain the differences in density between the different states of matter in terms of the arrangements of the atoms or molecules.			
	P14.5 Describe that when substances melt, freeze, evaporate, boil, condense or sublimate mass is conserved and that these physical changes differ from some chemical changes because the material recovers its original properties if the change is reversed			
SP14a Investigating densities Core Practical	P14.3 Investigate the densities of solids and liquids.			
SP14b Energy and changes of state	P14.6 Explain how heating a system will change the energy stored within the system and raise its temperature or produce changes of state.			
	P14.7 Define the terms specific heat capacity and specific latent heat and explain the differences between them.			
	P14.10Explain ways of reducing unwanted energy transfer through thermal insulation.			
SP14c Energy calculations	P14.8 Use the equation: change in thermal energy (joule, J) = mass (kilogram, kg) \times specific heat capacity (joule per kilogram degree Celsius, $\mathrm{J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$) \times change in temperature (degree Celsius, ${ }^{\circ} \mathrm{C}$) $\Delta \mathrm{Q}=\mathrm{m} \times \mathrm{c} \times \Delta \theta$			
	P14.9 Use the equation: thermal energy for a change of state (joule, J) $=$ mass (kilogram, kg) \times specific latent heat (joule per kilogram, J/kg) $\mathrm{Q}=\mathrm{m} \times \mathrm{L}$			
SP14c Investigating water - Core Practical	P14.11 Core Practical: Investigate the properties of water by determining the specific heat capacity of water and obtaining a temperaturetime graph for melting ice.			
	P14.12Explain the pressure of a gas in terms of the motion of its particles.			

