

Triple Science - Physics

SP12-13 Knowledge organiser

P12-13: Magnetism and electromagnetic induction

Lesson sequence

- 1. Magnets and magnetic fields
- 2. Electromagnetism
- 3. Magnetic forces
- 4. Electromagnetic induction
- 5. The national grid
- 6. Transformers and energy

1. Magnets and magnetic fields	
Permanent	A magnet that is always magnetic.
magnet	
Temporary	A magnet that is not always
magnet	magnetic.
Induced	When something becomes
magnet	temporarily magnetic when close to
	another magnet.
Uses of	Motors, loud speakers, generators,
magnets	door locks, knife holders.
Magnetic	The area of magnetic force around a
field	magnet.
Bar magnet	Curved lines going from north to
field shape	south
Uniform	When the north of one magnet is
magnetic	near the south of another, straight
field shape	field lines connect them.
Magnetic	From north to south
field	
direction	
Plotting a	Draw around a magnet. Place a
magnetic	plotting compass on it and draw a
field	small arrow to show needle
	direction. Move a cm in that
	direction and repeat. Connect arrows
	to form lines. Repeat.
Earth's	The North Pole is a magnetic south
magnetic	pole (because it attracts the north of
field	bar magnet).

2. Electromagnetism			
Electromagnetism	Current flowing through a wire		
	creates a magnetic field		
	around it.		
Wire magnetic	Concentric circles.		
field shape			
Wire magnetic	Stronger nearer the wire and		
field strength	with higher current.		
Wire magnetic	Right hand rule – thumb points		
field direction	towards negative, field in		
	same direction as fingers.		
Solenoid	A coil of wire with current		
	running through it.		
Solenoid	Outside: similar to bar magnet.		
magnetic field	Inside: almost uniform		
shape			
Solenoid	From negative to positive.		
magnetic field			
direction			
Electromagnet	A temporary magnet made by		
	placing an iron core inside a		
	solenoid.		

3. Magnetic forces				
Motor	Force produced when the magnetic			
effect	field from a permanent magnet			
	pushes a magnetic field from a wire.			
Direction	Flemming's left-hand rule – index			
of force	finger points in direction of magnetic			
from	field, middle finger points from + to –			
motor	current, thumb points in direction of			
effect	force.			
Force from	Magnetic field and electric field are			
motor	at right angles, wire is longer, current			
effect is	is greater, magnet is stronger.			
greatest				
when				
Magnetic	The strength of a magnetic field.			
flux				
density, B				
Newtons	Units of magnetic flux density.			
per amp				
metre (N /				
Am)				
Tesla, T	Same as newtons per amp metre.			
Calculating	Force = magnetic flux density x			
forces from	current x length			
the motor	F = B x I x L			
effect				
	Force = newtons			
	Magnetic flux density = teslas			
	Current = amps			

Length = metres

4. Elec	4. Electromagnetic induction		
Electromagnetic	The production of an		
induction	electromotive force (i.e.,		
	voltage) across an electrical		
	conductor in a		
	changing magnetic field.		
Potential	The difference of electrical		
difference	potential between two points.		
Generators	Consists of a coil of wire that is		
	rotated inside a magnetic field.		
	A the coil turns , a voltage is		
	induce in the wire.		
Dynamo	A generator with a commutator		
	is often called a dynamo		
Split rings	A small steel ring with two spiral		
	turns, such as a key ring.		
Commutator	Switches over the connections		
	every half-turn of the coil, an so		
	produce a form of direct current.		
Carbon brushes	Allows electrical contact with an		
	external circuit		
Alternating	An electric current that reverses		
current	its direction many times a		
	second at regular intervals.		
Alternator	A dynamo that generates an		
	alternating current.		
Direct current	An electric current flowing in		
	one direction only.		
Microphones	Convert the pressure variations		
	in sound waves into variations in		
	current in electrical circuits.		
Loudspeakers	Convert variations in an		
	electrical current into sound		
L	waves.		

Triple Science - Physics

SP12-13 Knowledge organiser

5	. The national grid	
Transformer	A device that changes the	1
	potential difference of a an	
	electricity supply.	
Electromagnetic	When voltage in one coil of wire	
induction	causes a voltage in another.	
Transformer	Two coils of wire wrapped	
structure	around an iron core. Current	
	goes in the primary coil and	
	comes out from the secondary	
	coil.	
How	Current passing through the	
transformers	primary coil induces a current in	
work	the secondary coil of higher	
	voltage and lower current 9or	
	vice versa).	
Conservation of	If the voltage increases, the	
energy in	current decreases, so energy is	
transformers	conserved since: Power =	
	current x voltage	
Transformer	Primary current x primary	
calculations	voltage = secondary current x	
	secondary voltage	
	$V_p \times I_p = V_s \times I_s$	
	Voltage = volts	
	Current = amps	

6. Transformers and energy		
ational grid	The system of cables and	
	transformers that transfers	
	electricity from power stations to	
	homes and businesses.	
oltage in	Power station = 25 kV	
ne national	Overhead cables = 400 kV	
rid	Factories = 33 kV	
	Homes = 230 V	
tep-up	Increase voltage and decreases	
ansformer	current.	
tep-down	Decrease voltage and increases	
ansformer	current.	
actors	Coils: more coils → higher voltage	
ffecting the	Frequency: how many times the	
otential	magnetic field changes or moves	
ifference	past the wire	
nduced in a		
ansformer		
ransformers	Transformers only work with	
nd current	alternating current.	

Worked example W2

An electricity substation supplies estate. Electricity is sent to the of 0.08Ω . The supply is at 230 V.	es 2 MW of power to a small housing substation along cables with a resistance Calculate the energy wasted every hour.
Current required: $I = \frac{P}{V}$	
$=\frac{2\times10^6W}{230V}$	
$= 8.7 \times 10^{3} \text{A}$	
Power transferred by heating	$P = I^2 \times R$
in the wires to the substation:	$= (8.7 \times 10^3 \text{A})^2 \times 0.08 \Omega$
	$= 6.05 \times 10^{6} W$
Energy transferred per hour: E	$= P \times t$
	= 6.05 × 10 ⁶ W × 3600 s

Energy wasted = 2.18 × 10¹⁰ J