SP12: Magnetism and the Motor Effect (Paper 2) SP13: Electromagnetic Induction (Paper 2)

Lesson	Objectives Tracker Sheet	Date covered	l know this well	I need to do more work on this
SP12a Magnets and magnetic fields	P12.1 Recall that unlike magnetic poles attract and like magnetic poles repel.			
	P12.2 Describe the uses of permanent and temporary magnetic materials including cobalt, steel, iron and nickel.			
	P12.3 Explain the difference between permanent and induced magnets.			
	bar magnets and for a uniform field, and relate the strength of the field to the concentration of lines.			
	P12.5 Describe the use of plotting compasses to show the shape and direction of the field of a magnet and the Earth's magnetic field.			
	P12.6 Explain how the behaviour of a magnetic compass is related to evidence that the core of the Earth must be magnetic.			
SP12b Electromagnetism	P12.7 Describe how to show that a current can create a magnetic effect and relate the shape and direction of the magnetic field around a long straight conductor to the direction of the current.			
	P12.8 Recall that the strength of the field depends on the size of the current and the distance from the long straight conductor.			
	P12.9 Explain how inside a solenoid (an example of an electromagnet) the fields from individual coils a add together to form a very strong almost uniform field along the centre of the solenoid b cancel to give a weaker field outside the solenoid.			
SP12c Magnetic forces	P12.10 H Recall that a current- carrying conductor placed near a magnet experiences a force and that an equal and opposite force acts on the magnet.			
	P12.11 H Explain that magnetic forces are due to interactions between magnetic fields.			

	P12.12 H Recall and use Fleming's		
	left-hand rule to represent the		
	relative directions of the force, the		
	relative directions of the force, the		
	current and the magnetic field for		
	cases where they are mutually		
	perpendicular.		
	P12 13 H Use the equation: force on		
	a conductor at right angles to a		
	magnetic field carrying a current		
	(newton, N) = magnetic flux density		
	(tesla, T or newton per ampere		
	metre, N/A m) × current (ampere, A)		
	x length (metre m)		
	E Bulul		
	F=BXIXI	 	
	P12.14 H Explain how the force on a		
	conductor in a magnetic field is used		
	to cause rotation in electric motors.		
	P13 1P H Explain how to		
	produce an electric current by the		
	relative movement of a magnet and a		
	conductor:		
	a on a small scale in the		
	laboratory		
	b in the large-scale generation		
	of electrical energy		
	D12.2. H Decell the factors that		
	affect the size and direction of an		
	induced potential difference, and		
	describe how the magnetic field		
SP13a	produced opposes the original		
Electromagnetic	change.		
induction	P13 3P H Explain how		
madelion	aloctromognatic induction is used in		
	electromagnetic induction is used in		
	alternators to generate current which		
	alternates in direction (a.c.) and in		
	dynamos to generate direct current		
	(d.c.).		
	P13.4P H Explain the action of		
	the microphone in converting the		
	pressure variations in sound waves		
	into variationa in ourrent in electrical		
	circuits, and the reverse effect as		
	used in loudspeakers and		
	headphones.		
	P13.5 H Explain how an alternating		
	current in one circuit can induce a		
	current in another circuit in a		
SP13b The national grid	transformer		
	P13.6 H Recall that a transformer		
	can change the size of an alternating		
	voltage.		
	P13.7P H Use the turns ratio	 	
	equation for transformers to calculate		
	either the missing voltage or the		
	missing number of turns.		
	Potential difference across primary		
	LOW/DOLEDINAL ONDEREDCE ACTOSS	1	1

		ne i bele	пест шесен от	magnetie maaetie
	secondary coil = number of turns in			
	primary coil/number of turns in			
	secondary coil			
	Vp /Vs = Np /Ns			
	P13.8 Explain why, in the national			
	grid, electrical energy is transferred			
	at high voltages from power stations,			
	and then transferred at lower			
	voltages in each locality for domestic			
	uses, as it improves the efficiency by			
	reducing heat loss in transmission			
	lines.			
	P13.9 Explain where and why step-			
	up and step-down transformers are			
	used in the transmission of electricity			
	in the national grid.			
	P13.11P H Explain the			
	advantages of power transmission in			
	high-voltage cables.			
	P13.10Use the power equation (for			
	transformers with 100% efficiency):			
	potential difference across primary			
	coil (volt, V) × current in primary coil			
	(ampere, A) = potential difference			
SP13c	across secondary coil (volt, V) ×			
Transformers and	current in secondary coil (ampere, A)			
energy	$Vp \times Ip = Vs \times I$			
0,	P13.11P H Explain the			
	advantages of power transmission in			
	high-voltage cables, using the			
	equations in 10.29, 10.31, 13.7P and			
	13.10			