

Triple Science - Physics

SP10-11 Knowledge organiser

P10-11: Electricity and Static Electricity

Lesson sequence

- 1. Electrical circuits
- 2. Current and potential difference
- 3. Current, charge and energy
- 4. Current, resistance and potential difference
- 5. More about resistance (Resistors)

6. More about resistance (controlling resistance)

- 7. Core practical investigating resistance
- 8. Transferring Energy
- 9. Electrical power
- 10. Transferring energy by electricity
- 11. Electrical safety
- 12. Charges and static electricity
- 13. Dangers and uses of static electricity
- 14. Electric fields

1. Electrical circuits		
Delocalised	Electrons that are free to move	
electrons	between many different atoms.	
Conventional	The flow of positive charge from	
current	the positive terminal towards the	
	negative terminal (goes in the	
	opposite direction to electrons).	
Electron flow	n flow Electrons flow from the negative	
	terminal towards the positive	
	terminal.	
Series circuit	A circuit in which there is only one	
	path for the current to flow.	
Parallel	A circuit with multiple paths for	
circuit	the current to flow.	

2. Current and potential difference		
Amperes, A	The unit of measurement for	
	current. Amps for short.	
Ammeter	Used for measuring current.	
	Connected in series.	
Potential	Aka voltage. This is what pushes	
difference	electrons around a circuit.	
Volts, V	The unit of measurement for	
	potential difference.	
Voltmeter	Used for measuring potential	
	difference. Connected in parallel.	
Current in	The same at all points in the	
series circuits	circuit.	
Current in	Less on the branches than at the	
parallel	battery. Current on branches	
circuits	adds up to that at the battery.	
Potential	Potential difference is shared	
difference in	between the components on a	
series circuits	circuit. It adds up to be the same	
	as the battery.	
Potential	The same across each branch as	
difference in	it is across the battery.	
parallel		
circuits		

3.	Current, charge and energy
Charge	The amount electricity that has
-	flowed through a circuit.
Coulombs,	The unit of measurement for
С	charge.
Current	The number of coulombs of charge
	that flows past a point each second.
Calculating	Charge = current x time
charge	Q = I x t
	Charge = coulombs
	Current = amps
	Time = seconds
The	The amount of energy transferred
meaning	by each coulomb of charge. One volt
of volts	= 1 joule per coulomb.
Calculating	Energy = charge x potential
energy	difference
	$E = Q \times V$
	Energy = joules
	Charge = coulombs
	Potential difference = volts
4. Current,	resistance and potential difference
Resistance	The difficulty with which current
	passes through materials.
Ohms, Ω	The unit of measurement for
	resistance.
High/low	Higher resistance $ ightarrow$ better insulator
resistance	Lower resistance $ ightarrow$ better
	conductor
Calculating	Current = potential diff / resistance
current	I = V / R
	Current = amps, A
	Potential diff = volts, V
	Resistance = ohms, Ω
	Note: This equation is normally
	written as V = IR.

Changing
currentHigher voltage \rightarrow higher currentHigher resistance \rightarrow lower current

5. More about resistance (Resistors)	
Resistors	Circuit components with differing
	resistance to control how much
	current flows to parts of a circuit.
Resistors	Total resistance is the sum of each of
in series	the resistors.
Voltage	Voltage is shared in proportion to the
and	resistance. The resistor with more
resistors	resistances takes more of the voltage.
in series	Calculate this using V=IR.
Resistors	Think about each branch of the circuit
in	as a different series circuit. Resistors
parallel	on different branches do not affect
	each other.
Variable	Resistors where you can change the
resistors	resistance to adjust the current.

Triple Science - Physics

SP10-11 Knowledge organiser

Light intensity (lux)

6. Mo	re about resistance (Controlling	
	resistance)	
LDR	Light-dependent resistor. High	
	resistance in dark, low resistance in	
	light.	
Thermistor	High resistance when cold, low	
	resistance when hot.	
Diode	High resistance in one direction, low	
	resistance in the other.	
Filament	High resistance causes the filament	
lamp	to heat up, producing light.	
Resistor	Current increases in direct	
graph	proportion to voltage (straight line	
	going through (0,0)).	
Filament	Current increases as voltage	
lamp	increases, but levels out eventually.	
graph		
Diode	Graph slopes up with a positive	
graph	voltage but stays at 0 with a	
	negative voltage.	
current	Current (A) Potential difference (V	F a e t

7. Core p	practical – investigating resistance	
١im	To explore how resistance changes	
	in different circuits.	
nvestigatin	g Set up a circuit with an ammeter,	
esistance	resistor and voltmeter across the	
	resistor. Vary the voltage and	
	record voltage and current.	
nvestigatin	g Set up a series circuit with an	
eries	ammeter, two bulbs and	
ircuits	voltmeters across each bulb and	
	the power supply. Vary the	
	voltage and record all readings	
nvestigatin	g Set up a parallel circuit with two	
arallel	bulbs and ammeters on each	
ircuits	branch and by the power supply,	
	and voltmeters across each bulb	
	and the powers supply. Vary	
	voltage, record all readings.	
Results	Resistor – doubling voltage	
	doubles current	
	Series circuit – voltage at bulbs	
	half of that at power supply	
	Parallel circuit – voltage at bulbs	
	equal to power supply, current	
	half that at power supply	
	8. Transferring Energy	
alculating	Energy = current x potential	
nergy	difference x time	
ransfer	$E = I \times V \times t$	
	Energy = joules	
	Current = amps	
	Potential difference = volts	
	Time = seconds	
Resistance	Electrons flowing through wires	
ind	collide with atoms and lose energy.	
energy	This energy is transferred to heat	
ransfer	5, · · · · · · · · · · · · · · · · · · ·	

Electrical	When electrical energy is
energy	transferred to wasted heat energy
dissipation	by resistance.
Reducing	Use thicker wires, use shorter wires,
resistance	use lower-resistance metals, reduce
	the temperature.
	9. Electrical power
Power	The rate of energy transfer
	The unit of new or: $1 M = 1$ is use nor
vvalls, vv	The unit of power. I w – I joule per
	second
Power	p = E
and work	$r = \frac{1}{t}$
done	Where 'P' is power in W, 'E' is work
	done in J, 't' is time in s.
Power,	$P = I \times V$
current	Where 'P' is the power in W, 'l' is the
and	current in A, V is the potential
voltage	difference in V.
Power,	$P = I^2 \times R$
current	Where 'P' is the power in W, 'l' is the
and	current in A, 'R' is the resistance in
resistance	Ω.

10. Transferring energy by electricity		
Mains	The electricity supplied from wall	
electricity	sockets.	
Vational	The systems of power lines and sub-	
grid	stations that distributes electricity	
	from power stations to homes and	
	businesses.	

Heaters	Transfer energy from electrical to	
	thermal.	
Motors	Transfer energy from electrical to	
	kinetic.	
Direct	Current that flows in one direction.	
current		
Alternating	Current that switches direction	
current	many times each second.	
Frequency	Mains current alternates (switches	
of mains	direction) 50 times each second.	
current	The frequency is 50 Hz.	
11. Electrical safety		
Live wire	Brown, 230 V, connects the	
	appliance to the power station.	
Neutral	Blue, 0 V, completes the circuit.	
wire		
Earth wire	Green and yellow, 0 V. Connects	
	the appliance to the ground so	
	current can flow there in the event	
	of a short circuit.	
Fuse	A thin metal wire that melts and	
	breaks the circuit if there is too	
	much current.	

of circuit breakers	switching	rather than replacing.
	Circui	t symbols
Switch		·~-
Cell		+ -
Battery		
Lamp		
Ammeter		
Voltmeter		—(v)—

Breaks the circuit if too much

current flows. Advantages Quicker than fuses, just need

Circuit

breaker

Triple Science - Physics

Resistor	
Variable resistor	
Diode	
LDR	
Thermistor	

12. Charges and static electricity		
Insulators	A substance or device which does	
	not readily conduct electricity.	
Static	An imbalance of	
electricity	electric charges within or on the	
	surface of a material.	
Charging	a charged object is brought near but	
by	not touched to a neutral conducting	
induction	object. The presence of	
	a charged object near a neutral	
	conductor will induce (force)	
	electrons within the conductor to	
	move.	

13. Danger and uses of static electricity		
Discharged	Allow (a liquid, gas, or other	
	substance) to flow out from where	
	it has been confined.	
Earthed	Connect (an electrical device) with	
	the ground.	

14. Electric fields	
Force	Is a volume of space around an object
field	in which another object can
neiu	
	experience a force.
Electric	A charged object with a force field
field	around it.
Point	A charge that is at a single point.
charge	
Field	Is a graphical visual aid for visualizing
lines	vector fields.
Uniform	Remaining the same in all cases and at
	all times; unchanging in form or
	character.

A positively charged balloon is held above a small piece of paper. Explain the effect of the balloon's electric field on the piece of paper. (3 marks)