

Triple Science - Physics

SP1 Knowledge organiser

P1: Motion Lesson sequence 1. Vectors and scalars 2. Speed-time graphs Distance-time graphs 3. 4. Acceleration 5. Velocity-time graphs 1. Vectors and scalars Magnitude A scientific word for size. Scalar A quantity with magnitude (but quantity no direction). Distance – 10 m Scalar examples Speed – 25 m/s Mass – e.g. 50 kg Vector A quantity with magnitude and quantity direction. Displacement – 10 m north Vector Velocity – 25 m/s east examples Force – 30 N left Acceleration -3 m/s^2 south Momentum – 400 N m/s right Vectors can be represented by Vector arrows, with the length of the arrows arrow representing the magnitude. Displacement The distance and direction travelled in a straight line. Your speed in a certain direction. Velocity

2. Speed		
Units of	Metres per second, m/s.	
speed		
Speed – word	Speed = distance / time	
equation		
	Speed = m/s	
	Distance = m	
	Time = s	

Speed –	J = X/t		
symbol	20 B C	11111	
equation	v = speed	i him	
	k = distance	1	
	t = time	30	
Instantaneous	Speed at a particular point in		
speed	time.		
	The average speed across the		
Average	whole of a journey, calculate		
speed	from $v = x/t$.		
Calculating	Distance = average speed x time	5	
distance	κ = v x t		
travelled –			
word	Distance = m		
equation	Average speed = m/s		
	Time = s		
Measuring	Measure the distance between		
speed	two points and time how long an		
	object takes to pass, then		
	calculate using v = x/t.		
Light gates	Equipment that can be used for		
	measuring time accurately with		
	fast-moving objects to help find		
	their speed.		
Some typical	Walking – 1-2 m/s		
speeds	Running – 3-8 m/s		
	Cycling – 5-20 m/s		
	Driving – 10-40 m/s		
	Flying – 250 m/s		
		_	
3.	Distance-time graphs		
Distance-time	A graph describing how your		
graph	distance from the start		
	changes over the course of a		

journey. Time is on the x-axis and distance on the y-axis.

Forwards – line sloping up

Horizontal line

constant speed Backwards – line sloping down

Distance-time

Distance-time graphs –

graphs –

stationary

Distance-time		Steeper line = faster	
graphs – line			
gradient			
Calculating		Speed = change in distance /	
speed from a		change in time	
distance-time			
graph		Speed = change in y / change	
		in x	
		4. Acceleration	
Acceleration	Changing velocity		
You	- 10	highing verocity	
accelerate	- v	ou change direction	
when	- Tou change direction		
Units of	Metres per second squared m/s ²		
acceleration			
Positive and	Positive acceleration = speeding		
negative			
acceleration	Negative acceleration = slowing		
	dov	wn	
Deceleration	Slo	wing down, negative	
	acc	eleration.	
Acceleration	Acceleration = change in speed /		
– word	tim	e e	
equation			
-	Acceleration = m/s^2		
	Cha	ange in speed = m/s	
	Tim	ne = s	
Acceleration	a =	(v – u)/ t	
– symbol			
equation	a = acceleration		
	v =	final speed	
	u =	initial speed	
	t =	time	
Linking	Use the equation:		
acceleration	x =	(v ² – u ²) / 2a	
and Velocity			
travelled	x =	Velocity travelled	
	a =	acceleration	
	v =	final speed	
	u =	initial speed	

Acceleration	10 m/s ²
during free	
fall	
	•
	5. Velocity-time graphs
Velocity-	A graph showing how your velocity
time graph	(speed) changes over time. Time is
	on the x-axis, velocity is on the y-
	axis.
Velocity-	Horizontal line
time graphs	
 constant 	
speed	
Velocity-	Speeding up – line sloping up
time graphs	
-	Slowing down – line sloping down
acceleration	
Velocity-	Horizontal line on the x-axis
time graphs	
 Stationary 	
Velocity-	Steeper line = greater acceleration
time graphs	
– line	
gradient	
Calculating	Acceleration = change in velocity/
acceleration	change in time
on a	
velocity-	Acceleration = change in y / change
time graph	in x
Calculating	Distance = area under the graph.
distance	
travelled	Divide the graph into rectangles
from a	and triangles, find the area of each
velocity-	and add them together.
time graph	-

