

Relative Formula Mass – RFM

SC9: Quantitative chemistry

Lesson sequence

- 1. Formula masses
- 2. Calculating empirical formulae
- 3. Conservation of mass
- 4. Calculating reacting masses
- 5. Moles (HT)
- 6. Stoichiometry of reactions (HT)

1. Formula masses Molecular formula Gives the number of atoms of each element present in a molecule.		Step 1: Write t	Step 1: Write the formula $H_2O = H + H + O$						
Empirical formula	Gives the number of atoms of each element present in a compound as the simplest whole number ratio.	Step 2: Substit	$2: Substitute the A_r's 1 + 1 + 16$						
Converting molecular to empirical formulae	Divide the number of each atom by the highest common factor of all of the atoms.	Step 3: Add th H = 1 Hydrogen	em up to get th C = 12 Carbon	$\frac{M_r + 1}{N = 14}$ Nitrogen	+ 16 = 18 O = 16 Oxygen	Na = 23 Sodium	Mg = 24 Magnesium	Al = 27 Aluminium	
Molecular to empirical formula examples	C ₂ H ₄ → CH ₂ (divided by 2) C ₆ H ₁₂ O ₆ → CH ₂ O (divided by 6) H ₂ O → H ₂ O (divided by 1)	P = 31 Phosphorous Using the meth	S = 32 Sulphur	Fe = 56 Iron the A _r 's above ca	Cu = 63.5 Copper	Cl = 35.5 Chlorine	Ca = 40 Calcium wing:		
Relative atomic mass, A _r	The mass of an atom relative to 1/12 th the mass of carbon-12. No units.	Sodium chlori	de – NaCl	Methane – CH ₄	Sodi	um hydroxide -	- NaOH	Aluminium oxide –Al ₂ O ₃	
Relative formula mass, M _r	The mass of one unit of a formula, found by adding the relative atomic masses of all of the atoms in it.					······	······ ··· ···		
Worke	d examples W1	Copper sulphate – CuSO ₄		Ethane – C_2H_6		Ethene – C_2H_4 Calcium hydroxide – $Ca(OH)_2$			
Calculat (CO ₂).	te the M_r of carbon dioxide						••••••		
= A _r (C = 12	$\begin{array}{l} (1) + (2 \times A_r(O)) \\ + (2 \times 16) \end{array}$	Iron sulphate -	- Fe ₂ (SO ₄) ₃	Ammoni 	um chloride –	- NH4Cl	Ammonium su	1lphate - (NH ₄) ₂ SO ₄	
So, M _r of	$fCO_2 = 44$								

The Relative Formula Mass (M_r) of a compound is the sum of the relative atomic masses of all its elements added together.

In order to calculate the RFM of a compound you must know the formula and the RAM's of each of the atoms involved (H = 1, O = 16).

Example: Find the M_r of water, H_2O

CHURCH
STRETT
SCHOOL

SC9 Knowledge organiser

2. Calcul To calculate	lating empirical formulae - Write each element's symbol	Symbol for element	Ca	Cl	1) 4g of Titanium reacting with
empirical formulae	with a ratio (:) symbol between - Write out the amount of each	Mass (g)	10.0	17.8	Carbon $(Ti = 48,$
from experimental	element from the questions - Divide each amount by the A _r	Relative atomic mass, A _r	40	35.5	
data	of the element - Divide each answer by the smallest answer to get a ratio Write the ampirical formula	Divide the mass of each element by its relative atomic mass	$\frac{10.0}{40} = 0.25$	$\frac{17.8}{35.5} = 0.5$	
To find a molecular formula	 - Write the empirical formula - Calculate M_r for the empirical formula - Divide the M_r of the 	Divide the answers by the smallest number to find the simplest ratio	$\frac{0.25}{0.25} = 1$	$\frac{0.5}{0.25} = 2$	empirical formula =
from an empirical	molecular formula by this number	Empirical formula	CaCl ₂	·	$\begin{array}{c} 2) 1.12g \text{ of non reacting with 0.} \\ \text{Oxygen} \qquad (\text{Fe} = 56, \end{array}$
formula	- Multiply the empirical formula by your answer	D To calculate an empirical formula, each elemen	t needs its own co	olumn of working.	
Empirica simple ru give you Example: of oxyger	l formula – is the simples ile to follow: always divid the simplest formula. : Find the empirical form n	It formula which represents the ratio of atoms de the data you are given by the A_r of the elemulae of an oxide of hydrogen, produced by rea	in a compound. ient. Then simpliction cting 1g of hydr	There is one ify the ratio to ogen with 8g	empirical formula = 3) 0.31g of Phosphorous reacting 1.07g of Chlorine (P = 31, C
Step 1: W	Vrite down the relative at	omic masses of the elements involved - Ar of I	$H = 1$ and A_r of Q	O = 16	
Step 2: D	vivide the masses given ir	the question by the A_r 's of the elements –			
H = 1/1 =	= 1 : O = 8/16 =	0.5			empirical formula =
Step 3: Id sides by t	lentify the ratio of atoms the smallest number and t	in the compound and simplify it, the easiest when make sure both sides are whole numbers-	ay to do this is t	o divide both	4) 6g of Magnesium reacting wi Oxygen (Mg = 24
1/0.5	: 0.5/0.5 =	2:1			
Step 4: C adding th	onvert your answer to the required number, repre	e empirical formula, by substituting the number senting the number of atoms, after the symbol	ers for the atomic $-2:1 = H_2O$	c symbols and	empirical formula =

SC9 Knowledge organiser

3. Co	nservation of mass	7	Γο ν
Conservation	The total mass of products		10 %
of mass	must equal the total mass of		
	reactants.		
Precipitation	A reaction that produces a		
reaction	solid precipitate by mixing		
	two solutions.	Ŋ	You
Closed system	A system in which no	Ċ	lm ³
-	chemicals can enter or leave,	×	X <i>T</i> 1
	such as a sealed test tube.		wor
Open system	A system in which chemicals]
	can enter or leave – such as		
	an open test tube.		
Conservation	No atoms are able to enter or		~
of mass in a	leave, so the total mass stays		4
closed system	the same – for example a		
	precipitation reaction in a		
	closed flask.		2
Conservation	For example, a carbonate		
of mass in an	reacting with acid producing		
open system	CO ₂ bubbles: the mass		
	appears to decrease because	Ň	Wor
	you can't weigh the gas that		4
	goes into the air, however it		
	is still there.		
3.	Concentration		4
Concentration	The amount of a solute		•
	dissolved in a certain		
	volume of solvent.		
Calculating			hea
concentration	Mass of solute (g)	10	olut
(g/dm ⁻³)	Volume of solution (dm ³)	30	orut
Decimetre	A unit of volume equivalent		
(dm ³)	to 1000cm ³ , to covert from	p	otas
	cm ³ to dm ³ divide the	io	did

volume by 1000.

To work out concentrations you need to know the following formula:	Use the balanced equations to
is work out concentrations you need to know the following formula.	answer the following questions.
Concentration (mol dm^{-3}) = $\frac{mass(g)}{volume \ of \ solution(dm^{-3})}$ You also need to know that 1 dm ³ = 1000cm ³ , which means that to convert to cm ³ to	 1) 12.4g of copper carbonate was heated and formed 8.0g of copper oxide. Calculate
dm ³ you should divide by 1000.	the mass of carbon dioxide
Work out the concentrations (in g/dm ⁻³) of the following solutions: 1. 20g of NH ₃ in 500cm ³	produced. $2C\mu CO_3 (a) \rightarrow 2C\mu O_3(b) + CO_2 (a)$
2. $10g \text{ of } Br_2 \text{ in } 2000 \text{ cm}^3$	
3. 18g of NaOH on 300cm ³	· · · · · · · · · · · · · · · · · · ·
Work out the mass of the solute in the following solutions 4. 250cm ³ of a 200g/dm ⁻³ solution of Ca(OH) ₂	2) 1.27g of copper was heated in air and formed 1.59g of copper oxide. Calculate the
5. 50cm^3 of a 0.5 M solution of HNO ₃	mass of oxygen that reacted with the copper.
	$2\mathbf{Cu}_{(s)} + \mathbf{O}_{2(g)} \rightarrow 2\mathbf{CuO}_{(s)}$
lead nitrate solution potassium	te te
empty flask	

B The total mass of the reactants always equals the total mass of products.

SC9 Knowledge organiser

4. Ca	lculating reacting masses	Calculating the mass of a product							
Excess	Any reactant which is not used up								
reactant	completely in a reaction because	Sometimes, we need to be able to work out how much of a substance is produced in a chemical reaction.							
	there is more of it than needed.	Example: What mass of hydrogen is produced by the electrolysis of Ag of water?							
Limiting	Any reactant of which is	Example: what mass of hydrogen is produced by the electrolysis of 4g of water?							
reactant	completely used up in a reaction. The limiting reactant determines	Step 1: Write down the balanced equation, and underline the substances mentioned in the question:							
	how much product is made.	$\underline{2H_2O} \rightarrow \underline{2H_2} + O_2$							
Calculating reacting	ing - Write out the balanced equation - Write the mass of the chemical Step 2: Work out the relative formula mass (M _r) of each substance:								
masses	you are given, and 'm' for the mass you are finding under their	$2 x ((2x1) + 16) \rightarrow 2 x (2 x 1) + (2 x 16)$							
	symbols - Draw a line underneath the	Step 3: Since the question only mentions water and hydrogen, you can ignore the oxygen. You just need the ratio of mass of							
	masses to make it a division	H ₂ O to mass of H ₂ :							
	- Calculate the Mr of each, multiply by the big numbers and	So, 36g of water produces 4g of hydrogen.							
	- Put an equals sign between the	1g of water produces $(4 \div 36)$ g of hydrogen(Divide both sides by 36)							
	two to form an equation. - Solve for 'm'	4g of water produces $(4 \div 36) \ge 4$ g of hydrogen							
		= 0.44g of hydrogen							

Worked example

Calculate the mass of chlorine needed to make 53.4 g of aluminium chloride.

Write the balanced equation	$2AI + 3Cl_2 \rightarrow 2AICl_3$
Calculate relative formula masses of the substances needed	$M_r Cl_2 = 2 \times 35.5 = 71$ $M_r AlCl_3 = 27 + (3 \times 35.5) = 133.5$

Calculate ratio of masses (multiply M_r values by the balancing numbers shown in the equation).

3Cl ₂	makes	2AlC
------------------	-------	------

so **3** × 71 = <u>213</u> g Cl₂ makes **2** × 133.5 = <u>267</u> g AlCl₃

Work out the mass for 1 g of reactant or product. (Here we want 1 g of the product because that's the mass we know already.)

÷ 267	$\frac{213}{267}$ g Cl ₂	makes	267 267 g AlCl ₃	÷ 267
× 52 /	0.798 g <mark>Cl</mark> ₂	makes	1 g AlCl ₃	
Scale up or down	42.6 g Cl ₂	makes	53.4 g AlCl	
(from 1g to the				
mass you are given)				

	Q1) What mass of aluminium is produced from 100 tonnes of									
e.		alumi	nium oxide?					(Al = 27, O =	16)	
-			$2Al_2O_3$	\rightarrow	4Al	+	3O ₂			
							•••••			
		Q2) What mass of ethanol (C ₂ H ₅ OH) is produced from the reaction of 14 tonnes of ethane (C ₂ H ₄)? (C = 12, H = 1, O = 16)								
7			$C_2H_{4\ (g)}$	+	H_2) (g)	\rightarrow	C ₂ H ₅ OH (1)		

SC9 Knowledge organiser

	5. Moles (HT)		Mould	
Moles	The unit of measurement of		WOLK	
	chemicals – one mole of any chemical		10.0 -	
	is the same amount.		10.8 g	
One mole	An amount of a chemical such that		alumii	
	one mole has a mass in grams that is			
	the same as its relative formula mass.			
Avogadro's	6.02×10^{23} : the number of			
constant	atoms/molecules present in one mole			
	of a substance.		Calci	
Calculating	Quantity in moles = mass / relative		Calci	
moles from	formula mass		(= m	
mass			,	
Calculating	Quantity in moles = number of		Divid	
moles from	particles / 6.02 x 10 ²³			
a number				
of particles			Simp	
Calculating	Number of particles = (mass / relative		'	
the	formula mass) x 6.02 x 10 ²³		So 2m	
number of			JU 2 11	
particles			the fo	
from a				
mass of			21	
substance			ZAL	

Worked example W2

.8 g of aluminium reacted with 42.6 g of chlorine, Cl_2 , to produce uminium chloride, AlCl₃. Deduce the balanced equation for the reaction.

	Al	Cl ₂				
Calculate the number of moles (= mass/A _r or M _r)	$\frac{10.8}{27} = 0.4$	$\frac{42.6}{2 \times 35.5} = 0.6$				
Divide by the smaller	$\frac{0.4}{0.4} = 1$	$\frac{0.6}{0.4} = 1.5$				
Simplest whole number ratio	1 × 2 = 2	1.5 × 2 = 3				
So 2 mol of Al react with 3 mol of Cl_2 . The equation is completed by adding the formula of the product and balancing in the normal way.						

 $+ 3Cl_2 \rightarrow 2AlCl_3$

1	Calculate the number of moles of water molecules, H_2O , in 9 g of water		
	Calculate the number of moles of ethanol molecules, C_2H_5OH , in 9.2 g of ethanol.		
2	Calculate the mass of 2.5 mol of potassium lodide, Ki		
	Calculate the mass of 0.125 mol of calcium sulfate, CaSO ₄ .		

Mass		Atoms	
/-	Moles RAM	Moles	Avag- adro's Number
	Avagadro's consta	$nt = 6.02 \text{ x } 10^{23}$	
1	Calculate the number of molecule	s in 0.5 mol of car	bon dioxide, CO ₂
	Calculate the number of molecules	s in 2 mol of oxyge	en, O2.
2	Calculate the number of moles in	1.505 × 10 ²³ atom	s of sodium
	Calculate the number of molecules	s in 1.806 × 10 ²⁴ a	atoms of copper.
3	Calculate the number of molecule	s in 9 g of hydroge	en, H₂
	Calculate the number of molecules	s in 48 g of oxygei	n, O ₂ .

\mathbf{X}	CHURCH STRETTON SCHOOL
	SCHOOL

SC9 Knowledge organiser

6. Stoichiometry (HT)		Worked example W1	1. 2.76 g sodium reacts with 5.70 g titanium
Stoichiometry	The ratio of the number of moles of each substance involved in a	1.50 g of ammonium chloride and 4.00 g of calcium hydroxide are heated together to form ammonia.	chloride, TiCl ₄ to form titanium and sodium chloride, NaCl. Use this data to deduce the
	reaction.	$2NH_4Cl + Ca(OH)_2 \rightarrow 2NH_3 + CaCl_2 + 2H_2O$	balanced equation for the reaction.
Stoichiometric	The 'big' numbers	a Which is the limiting reactant?	Relative atomic masses:
coefficient	written in a balanced	b Calculate the mass of ammonia formed.	Na = 23 $Cl = 35.5$ $Ti = 48$
	equation.	a The equation shows that 2 mol of NH ₄ Cl reacts with 1 mol of Ca(OH) ₂ number of moles of Ca(OH) = $(200 \pi/(20 + 3/16 + 1)) = 0.05(11 mol)$	
Deducing stoichiometry	- Calculate the number of moles present of each of	We need: $2 \times 0.0541 = 0.108$ mol NH Cl to react with 0.0541 mol of Ca(OH).	
storemonietry	the reactants (or	We have: $1.50 \text{ g}/(14 + (4 \times 1) + 35.5) = 0.0280 \text{ mol}$	
	- Find the simplest	We have less than the 0.0541 mol of NH_4Cl needed; NH_4Cl = limiting reactant.	
	whole-number ratio	b The equation shows that the number of moles of NH ₃ made equals	2. $TiCl_4 + 2Mg \rightarrow Ti + 2MgCl_2$
	way to find the numbers of products (or reactants)	So, 0.0280 mol of NH ₄ Cl forms 0.0280 mol of NH ₃ mass of NH ₄ formed = mol × M = 0.0280 × (14 + (3 × 1)) = 0.476 g	What mass of Titanium (Ti) can be made when 1.9g of Titanium chloride (TiCl ₄) reacts with 6g
		, , , , , , , , , , , , , , , , , , ,	
$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$			
1. Identify the stoichiometric ratio between magnesium and sulphuric acid in the reaction above.			

 If 5 moles of magnesium is reacted with 7 moles of sulphuric acid, which reagent is in excess? How many moles of each product is formed?

$Fe_2O_3 + 3 CO \rightarrow 2 Fe + 3 CO_2$

3. Identify the stoichiometric ratio between iron oxide and carbon monoxide in the reaction above.

4. If 480 tonnes of iron oxide is reacted with 308 tonnes of carbon monoxide, which reagent is in excess? How many moles of each product is formed?

of hydr	rogen (H ₂)?	
• • • • • • • • •		•••••
• • • • • • • •		•••••

What mass of Tungsten (W) can be made when

23.2g of Tungsten oxide (WO₃) reacts with 20g

3. WO_{3 (s)} + $3H_{2 (g)} \rightarrow W_{(s)} + 3H_{2}O_{(1)}$