SC9: Quantitative chemistry

Lesson sequence

1. Formula masses
2. Calculating empirical formulae
3. Conservation of mass
4. Calculating reacting masses
5. Moles (HT)
6. Stoichiometry of reactions (HT)

1. Formula masses	
Molecular formula	Gives the number of atoms of each element present in a molecule.
Empirical formula	Gives the number of atoms of each element present in a compound as the simplest whole number ratio.
Converting molecular to empirical formulae	Divide the number of each atom by the highest common factor of all of the atoms.
Molecular to empirical formula examples	$\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{CH}_{2}($ divided by 2) $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{6} \rightarrow$ CH $\mathrm{H}_{2} \mathrm{O}$ (divided by 1) by 6)
Relative atomic mass, $\mathbf{A}_{\mathbf{r}}$	The mass of an atom relative to $1 / 12^{\text {th }}$ the mass of carbon-12. No units.
Relative formula mass, $\mathbf{M}_{\mathbf{r}}$	The mass of one unit of a formula, found by adding the relative atomic masses of all of the atoms in it.

Worked examples W1

Calculate the M_{r} of carbon dioxide $\left(\mathrm{CO}_{2}\right)$.

$$
\begin{aligned}
& =A_{r}(C)+\left(2 \times A_{r}(O)\right) \\
& =12+(2 \times 16)
\end{aligned}
$$

So, Mr_{r} of $\mathrm{CO}_{2}=44$

Relative Formula Mass - RFM

The Relative Formula Mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of a compound is the sum of the relative atomic masses of all its elements added together.

In order to calculate the RFM of a compound you must know the formula and the RAM's of each of the atoms involved ($\mathrm{H}=1, \mathrm{O}=16$).

Example: Find the M_{r} of water, $\mathrm{H}_{2} \mathrm{O}$
Step 1: Write the formula
Step 2: Substitute the A_{r} 's

Step 3: Add them up to get the M_{r}
$1+1+16=18$

$\mathrm{H}=1$	$\mathrm{C}=12$	$\mathrm{~N}=14$	$\mathrm{O}=16$	$\mathrm{Na}=23$	$\mathrm{Mg}=24$	$\mathrm{Al}=27$
Hydrogen	Carbon	Nitrogen	Oxygen	Sodium	Magnesium	Aluminium
$\mathrm{P}=31$	$\mathrm{~S}=32$	$\mathrm{Fe}=56$	$\mathrm{Cu}=63.5$	$\mathrm{Cl}=35.5$	$\mathrm{Ca}=40$	
Phosphorous	Sulphur	Iron	Copper	Chlorine	Calcium	

Using the method shown and the A_{r} 's above calculate the M_{r} 's for the following:

2. Calculating empirical formulae	
To calculate empirical formulae from experimental data	- Write each element's symbol with a ratio (:) symbol between - Write out the amount of each element from the questions - Divide each amount by the A_{r} of the element - Divide each answer by the smallest answer to get a ratio - Write the empirical formula
To find a molecular formula from an empirical formula	- Calculate M_{r} for the empirical formula - Divide the M_{r} of the molecular formula by this number - Multiply the empirical formula by your answer

| Symbol for element | Ca | Cl |
| :--- | :--- | :--- | :--- |
| Mass (g) | 10.0 | 17.8 |
| Relative atomic mass, A_{r} | 40 | 35.5 |
| Divide the mass of each element by its
 relative atomic mass | $\frac{10.0}{40}=0.25$ | $\frac{17.8}{35.5}=0.5$ |
| Divide the answers by the smallest
 number to find the simplest ratio | $\frac{0.25}{0.25}=1$ | $\frac{0.5}{0.25}=2$ |
| Empirical formula | CaCl_{2} | |

1) 4 g of Titanium reacting with 1 g of
 Carbon
 ($\mathrm{Ti}=48, \mathrm{C}=12$)

\qquad
\qquad
\qquad
empirical formula $=$ \qquad
2) 1.12 g of Iron reacting with 0.48 g of

Oxygen
$(\mathrm{Fe}=56, \mathrm{O}=16)$
\qquad
\qquad

Empirical formula

Empirical formula - is the simplest formula which represents the ratio of atoms in a compound. There is one simple rule to follow: always divide the data you are given by the A_{r} of the element. Then simplify the ratio to give you the simplest formula.

Example: Find the empirical formulae of an oxide of hydrogen, produced by reacting 1 g of hydrogen with 8 g of oxygen

Step 1: Write down the relative atomic masses of the elements involved - A_{r} of $\mathrm{H}=1$ and A_{r} of $\mathrm{O}=16$
Step 2: Divide the masses given in the question by the A_{r} 's of the elements -
$\mathrm{H}=1 / 1=1: \mathrm{O}=8 / 16 \quad=\quad 0.5$
Step 3: Identify the ratio of atoms in the compound and simplify it, the easiest way to do this is to divide both sides by the smallest number and then make sure both sides are whole numbers-
$1 / 0.5 \quad: 0.5 / 0.5 \quad=\quad 2: 1$
Step 4: Convert your answer to the empirical formula, by substituting the numbers for the atomic symbols and adding the required number, representing the number of atoms, after the symbol $-2: 1=\mathrm{H}_{2} \mathrm{O}$

empirical formula $=$

3) 0.31 g of Phosphorous reacting with 1.07 g of Chlorine $\quad(\mathrm{P}=31, \mathrm{Cl}=35.5)$
\qquad
\qquad
\qquad
empirical formula $=$ \qquad
4) 6 g of Magnesium reacting with 4 g of Oxygen
$(\mathrm{Mg}=24, \mathrm{O}=16)$
\qquad
\qquad
\qquad
\qquad

3. Conservation of mass	
Conservation of mass	The total mass of products must equal the total mass of reactants.
Precipitation reaction	A reaction that produces a solid precipitate by mixing two solutions.
Closed system	A system in which no chemicals can enter or leave, such as a sealed test tube.
Open system	A system in which chemicals can enter or leave - such as an open test tube.
Conservation of mass in a closed system	No atoms are able to enter or leave, so the total mass stays the same - for example a precipitation reaction in a closed flask.
Conservation of mass in an open system	For example, a carbonate reacting with acid producing CO bubbles: the mass appears to decrease because you can't weigh the gas that goes into the air, however it is still there.

3. Concentration	
Concentration	The amount of a solute dissolved in a certain volume of solvent.
Calculating concentration $\left(\mathbf{g} / \mathbf{d m}^{-3}\right)$	Mass of solute (g) Volume of solution $\left(\mathrm{dm}^{3}\right)$
Decimetre $\left(\mathbf{d m}^{3}\right)$	A unit of volume equivalent to $1000 \mathrm{~cm}^{3}$, to covert from cm^{3} to dm volume by 1000.

To work out concentrations you need to know the following formula:

$$
\text { Concentration }\left(\text { mol dm}{ }^{-3}\right)=\frac{\operatorname{mass}(g)}{\text { volume of solution }\left(\mathrm{dm}^{-3}\right)}
$$

You also need to know that $1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$, which means that to convert to cm^{3} to dm^{3} you should divide by 1000 .
Work out the concentrations (in $\mathrm{g} / \mathrm{dm}^{-3}$) of the following solutions:

1. 20 g of NH_{3} in $500 \mathrm{~cm}^{3}$
2. 10 g of Br_{2} in $2000 \mathrm{~cm}^{3}$
3. 18 g of NaOH on $300 \mathrm{~cm}^{3}$

Work out the mass of the solute in the following solutions
4. $250 \mathrm{~cm}^{3}$ of a $200 \mathrm{~g} / \mathrm{dm}^{-3}$ solution of $\mathrm{Ca}(\mathrm{OH})_{2}$
5. $50 \mathrm{~cm}^{3}$ of a 0.5 M solution of HNO_{3}

B The total mass of the reactants always equals the total mass of products.

Use the balanced equations to answer the following questions.

1) 12.4 g of copper carbonate was heated and formed 8.0 g of copper oxide. Calculate the mass of carbon dioxide produced.
$2 \mathrm{CuCO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{CuO}_{(\mathrm{s})}+\mathrm{CO}_{2}(\mathrm{~g})$
\qquad
\qquad
\qquad
\qquad
2) 1.27 g of copper was heated in air and formed 1.59 g of copper oxide. Calculate the mass of oxygen that reacted with the copper.

$$
2 \mathrm{Cu}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CuO}_{(\mathrm{s})}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

4. Calculating reacting masses	
Excess reactant	Any reactant which is not used up completely in a reaction because there is more of it than needed.
STRERTON	
SCHOOL	

completely used up in a reaction.

The limiting reactant determines

how much product is made.\end{array}\right|\)

Triple Science - Chemistry

Calculating the mass of a product

Sometimes, we need to be able to work out how much of a substance is produced in a chemical reaction.
Example: What mass of hydrogen is produced by the electrolysis of 4 g of water?
Step 1: Write down the balanced equation, and underline the substances mentioned in the question:
$\underline{\mathbf{2 H}_{2} \mathrm{O}} \rightarrow \quad \underline{\mathbf{2 H}_{2}}+\quad \mathrm{O}_{2}$

Step 2: Work out the relative formula mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of each substance:

$$
2 \times((2 \times 1)+16) \rightarrow \quad 2 \times(2 \times 1) \quad+\quad(2 \times 16)
$$

Step 3: Since the question only mentions water and hydrogen, you can ignore the oxygen. You just need the ratio of mass of $\mathrm{H}_{2} \mathrm{O}$ to mass of H_{2} :

So, $\quad 36 \mathrm{~g}$ of water produces 4 g of hydrogen.
1 g of water produces $\quad(4 \div 36) \mathrm{g}$ of hydrogen \quad (Divide both sides by 36)
4 g of water produces
$(4 \div 36) \times 4 \mathrm{~g}$ of hydrogen
$=0.44 \mathrm{~g}$ of hydrogen

Worked example

Calculate the mass of chlorine needed to make 53.4 g of aluminium chloride.

Write the balanced eq	$2 \mathrm{Al}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{AlCl}_{3}$
Calculate relative formula masses of the substances needed	$\begin{aligned} & \mathrm{M}_{\mathrm{r}} \mathrm{Cl}_{2}=2 \times 35.5=71 \\ & \mathrm{M}_{\mathrm{r}} \mathrm{AlCl}_{3}=27+(3 \times 35.5)=133 . \end{aligned}$
Calculate ratio of masses (multiply M_{r} values by the balancing numbers shown in the equation). $3 \mathrm{Cl}_{2}$ makes $2 \mathrm{AlCl}_{3}$ so $3 \times 71=\underline{213} \mathrm{~g} \mathrm{Cl}_{2}$ makes $2 \times 133.5=\underline{267} \mathrm{~g} \mathrm{AlCl}_{3}=$	
Work out the mass for 1 g of react the product because that's the ma $\begin{array}{ll} \div 267 & \frac{213}{267} \mathrm{~g} \mathrm{Cl}_{2} \\ & 0.798 \mathrm{~g} \mathrm{Cl}_{2} \end{array}$	or product. (Here we want 1 g of we know already.) es $\frac{267}{267} \mathrm{~g} \mathrm{AlCl}_{3}$ $\div 267$ es $1 \mathrm{~g} \mathrm{AlCl}_{3}{ }^{1}$
Scale up or down (from 1 g to the mass you are given)	

Q1) What mass of aluminium is produced from 100 tonnes of aluminium oxide?
$(\mathrm{Al}=27, \mathrm{O}=16)$
$2 \mathrm{Al}_{2} \mathrm{O}_{3} \quad \rightarrow \quad 4 \mathrm{Al}+3 \mathrm{O}_{2}$

Q2) What mass of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is produced from the reaction of 14 tonnes of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$?

$$
(\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16)
$$

$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$
$+\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\rightarrow \quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)}$

5. Moles (HT)	
Moles	The unit of measurement of chemicals - one mole of any chemical is the same amount.
One mole	An amount of a chemical such that one mole has a mass in grams that is the same as its relative formula mass.
Avogadro's constant	$6.02 \times 10^{23}:$ the number of atoms/molecules present in one mole of a substance.
Calculating moles from mass	Quantity in moles = mass / relative formula mass
Calculating moles from a number of particles	Quantity in moles = number of
particles / 6.02 x 10^{23}	

the

number of

particles

from a

mass of

substance\end{array} \quad $$
\begin{array}{l}\text { formula mass) x } 6.02 \times 10^{23}\end{array}
$$\right|\)| fumber of particles $=($ mass / relative |
| :--- |

Worked example W2

10.8 g of a luminium reacted with 42.6 g of chlorine, Cl_{2}, to produce aluminium chloride, AlCl, Deduce the balanced equation for the reaction.

	Al	Cl_{2}
Calculate the number of moles (= mass/A or M. $)$	$\frac{10.8}{27}=0.4$	$\frac{42.6}{2 \times 35.5}=0.6$
Divide by the smaller	$\frac{0.4}{0.4}=1$	$\frac{0.6}{0.4}=1.5$
Simplest whole number ratio	$1 \times 2=2$	$1.5 \times 2=3$

So 2 mol of A l react with 3 mol of Cl_{2}. The equation is completed by adding the formula of the product and balancing in the normal way.

$$
2 \mathrm{Al}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{AlCl}
$$

1 Calculate the number of moles of water molecules, $\mathrm{H}_{2} \mathrm{O}$, in 9 g of water

Calculate the number of moles of ethanol molecules, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, in 9.2 g of ethanol.

2 Calculate the mass of 2.5 mol of potassium iodide, KI
\qquad

Calculate the mass of 0.125 mol of calcium sulfate, CaSO_{4}.

$$
\text { Avagadro's constant }=6.02 \times 10^{23}
$$

1 Calculate the number of molecules in 0.5 mol of carbon dioxide, CO_{2}
\qquad

Calculate the number of molecules in 2 mol of oxygen, O_{2}.
\qquad

2 Calculate the number of moles in 1.505×10^{23} atoms of sodium
\qquad

Calculate the number of molecules in 1.806×10^{24} atoms of copper.
\qquad
3 Calculate the number of molecules in 9 g of hydrogen, H_{2}
\qquad

Calculate the number of molecules in 48 g of oxygen, O_{2}.

6. Stoichiometry (HT)	
Stoichiometry	$\begin{array}{l}\text { The ratio of the number } \\ \text { of moles of each } \\ \text { substance involved in a } \\ \text { reaction. }\end{array}$
$\begin{array}{l}\text { Stoichiometric } \\ \text { coefficient }\end{array}$	$\begin{array}{l}\text { The 'big' numbers } \\ \text { written in a balanced } \\ \text { equation. }\end{array}$
$\begin{array}{l}\text { Deducing } \\ \text { stoichiometry }\end{array}$	$\begin{array}{l}\text { - Calculate the number of } \\ \text { moles present of each of } \\ \text { the reactants (or } \\ \text { products) }\end{array}$
- Find the simplest	
whole-number ratio	
- Balance in the normal	
way to find the numbers	
of products (or reactants)	

Worked example W1

1.50 g of ammonium chloride and 4.00 g of calcium hydroxide are heated together to form ammonia.

$$
2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

a Which is the limiting reactant?
b Calculate the mass of ammonia formed.
a The equation shows that 2 mol of $\mathrm{NH}_{4} \mathrm{Cl}$ reacts with 1 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ number of moles of $\mathrm{Ca}(\mathrm{OH})_{2}=4.00 \mathrm{~g} /(40+2(16+1))=0.0541 \mathrm{~mol}$

We need: $2 \times 0.0541=0.108 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}$ to react with 0.0541 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$. We have: $1.50 \mathrm{~g} /(14+(4 \times 1)+35.5)=0.0280 \mathrm{~mol}$

We have less than the 0.0541 mol of $\mathrm{NH}_{4} \mathrm{Cl}$ needed; $\mathrm{NH}_{4} \mathrm{Cl}=$ limiting reactant.
b The equation shows that the number of moles of NH_{3} made equals the number of moles of $\mathrm{NH}_{4} \mathrm{Cl}$ used. So, 0.0280 mol of $\mathrm{NH}_{4} \mathrm{Cl}$ forms 0.0280 mol of NH_{3} mass of NH_{3} formed $=\mathrm{mol} \times \mathrm{M}_{\mathrm{r}}=0.0280 \times(14+(3 \times 1))=0.476 \mathrm{~g}$

$$
\mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2}
$$

1. Identify the stoichiometric ratio between magnesium and sulphuric acid in the reaction above.
2. If 5 moles of magnesium is reacted with 7 moles of sulphuric acid, which reagent is in excess? How many moles of each product is formed?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

3. Identify the stoichiometric ratio between iron oxide and carbon monoxide in the reaction above.
4. If 480 tonnes of iron oxide is reacted with 308 tonnes of carbon monoxide, which reagent is in excess? How many moles of each product is formed?
5. 2.76 g sodium reacts with 5.70 g titanium chloride, TiCl_{4} to form titanium and sodium chloride, NaCl . Use this data to deduce the balanced equation for the reaction.

Relative atomic masses:
$\mathrm{Na}=23 \quad \mathrm{Cl}=35.5 \quad \mathrm{Ti}=48$
2. $\mathrm{TiCl}_{4}+2 \mathrm{Mg} \rightarrow \mathrm{Ti}+2 \mathrm{MgCl}_{2}$

What mass of Titanium (Ti) can be made when 1.9 g of Titanium chloride $\left(\mathrm{TiCl}_{4}\right)$ reacts with 6 g of magnesium $(\mathrm{Mg}$?
\qquad
\qquad
\qquad
3. $\mathrm{WO}_{3(\mathrm{~s})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{W}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}_{\text {(1) }}$

What mass of Tungsten (W) can be made when 23.2 g of Tungsten oxide $\left(\mathrm{WO}_{3}\right)$ reacts with 20 g of hydrogen $\left(\mathrm{H}_{2}\right)$?
\qquad
\qquad
\qquad
\qquad

