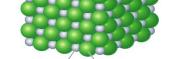


Triple Science - Chemistry

configurations with full outer shells.

SC5-7 Knowledge organiser

0


× 0

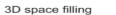
С

Н н 🌔 С 🔵 н

× н

SC5-7: Bonding		Forming	Electrons are transferred from a	3. Properties of ionic compounds			4. Covalent bonding	
1 Jania	Sequence		metal atom to a non-metal atom to form a positive metal cation and a negative metal anion. The	Melting point of ionic		se melting needs a lot of reak strong ionic bonds.	Covalent bond	An electrostatic attraction betwe two atoms formed from a shared pair of electrons.
 Ionic bonding Ionic compounds Duration of the standard standard			oppositely charged ions are attracted to each other.	compounds	Many ionic	compounds dissolve in	Double bond	A covalent bond involving two shared pairs of electrons.
 Properties of ionic compounds Covalent bonding Covalent structures 		2. Ionic compoundsChemicalShows the number of atoms of each element present in one		ionic water. compounds		t conduct because ions	cross	A bonding diagram showing the electrons in the outer shell of ea atom, with electrons drawn as d
 Allotropes of carbon Metallic bonding Charif in analysis in the second seco		Writing	'unit' of a compound. - Each chemical symbol starts		Liquid (molten or so		Hydrogen, H ₂	or crosses. Two overlapping circles both labelled H. One pair in the overla
8. Classi	fying materials 1. Ionic bonding An attraction between two atoms	formulae	with a capital letter. - The number of each atom present is shown with a subscript number after the symbol. E.g.	How ionic compounds conduct	positive cati	are in a liquid form, the ions move to the ectrode (cathode) and	Hydrogen chloride, HCl	Two overlapping circles labelled and Cl. One pair in the overlap, 6 electrons around Cl.
lon	that holds them together. An atom or group of atoms that has gained a charge by gaining or losing	Determining	H ₂ SO ₄ . - Ensure the total number of	electricity	the negative positive electron	e anions move the ctrode (anode).	Oxygen, O ₂	Two overlapping circles both labelled O. Two pairs in the over 4 electrons around each O.
Charge	electrons. Whether an ion is positive or	ionic formulae	balance. - Change the number of each ion	The dots (●) a represent el differen	ectrons from	The circles represent electron shells.	Water, H₂O	Three overlapping circles in a lin labelled H, O, H. A pair in each overlap, 4 electrons around O.
Cation	negative. Positive ion formed by losing electrons. Formed by metal atoms.	Compound	present by changing the subscript numbers. An ion made from two or more	C	5)-	**	Carbon dioxide, CO₂	Three overlapping circles in a lir labelled O, C, O. Two pairs in ea overlap, 4 electrons around eac
Anion	Negative ion formed by gaining electrons. Formed by non-metal atoms.	ions Common compound ior	atoms that share a charge. Hydroxide: OH ⁻ Is Nitrate: NO ₃ -	(ee			Methane, CH₄	Five circles with one in the central labelled C and 4 labelled H arou
Size of charge	The number of electrons transferred affects the size of charge: losing two electrons makes a 2+ charge,	compound for	Sulfate: SO ₄ ²⁻ Sulfite: SO ₃ ²⁻ Carbonate: CO ₃ ²⁻		tom (Na): figuration 2.8.1	chlorine atom (CI): electronic configuration 2.8.7	Valency	A pair in each overlap. The number of covalent bonds a atom can form.
	gaining three electrons makes a 3- charge.	Including	Ammonium: NH₄⁺ If you need more than one, put		loses one electron	gains one electron	Valency and groups	Group 4 = 4 (4 electrons needed Group 5 = 3 (3 electrons needed Group 6 = 2 (2 electrons needed
How many electrons are given away or stolen?	Metals: give away however many electrons are in the outer shell Non-metals: steal however many electrons are needed to fill the outer shell.	compound ior in formulae Ionic lattice	 brackets around it. E.g. Mg(OH)₂ The structure of ionic compounds: a repeating 3D pattern of alternating positive 		at		Working out molecular formulae	Group 7 = 1 (1 electron needed) Find the lowest common multip the valency of each atom. Use the number of an atom required to reach the LCM.
Electrostatic force Ionic bond	A force of attraction between a positive and negative particle. When two oppositely charged ions are held together by an electrostatic force.	Ĺ	and negative ions.	В	oth ions have s	chloride ion (Cl ⁻): electronic configuration 2.8.8 table electronic full outer shalls	н 🐑 н	

Na⁺ (a sodium ion) Cl⁻ (a chloride ion)



Triple Science - Chemistry

SC5-7 Knowledge organiser

		-					
	ovalent structures		Allotropes of carbon	-	7. Metallic bonding		8. Bonding models
Molecule	A particle made from two or	Allotrope	A different structural form of an	Structure of	A lattice of positive metal ions	Classifying	The properties of a material can
<u></u>	more atoms bonded together.		element made of the same atoms	metals	surrounded by a cloud of	materials	be used to determine the type of
	A structure made of small		just bonded together differently.		delocalised electrons.	Description	bonding in it.
structure	molecules in which a few			Delocalised	Electrons that are not bound to a	Properties	High melting point, often soluble
	atoms join together to form a	Carbon's	Graphite, diamond, graphene,	electrons	single atom but move freely	of ionic	in water, solid does not conduct electricity, liquid/solution does.
	small particle.	allotropes	fullerenes		around many.	compounds	Low melting point, does not
	Atoms in a molecule are held	Graphite	Structure: stacked sheets of	Metallic	The electrostatic attraction	Properties of simple	conduct electricity, sometimes
molecular substances	together by strong covalent bonds. Neighbouring		carbon in a honeycomb pattern	bonding	between the lattice of positive	molecular	soluble in water.
substances	molecules are held close by		with delocalised electrons between them.		metal ions and the cloud of	compounds	soluble in water.
	weak intermolecular forces.		Properties: sheets slide apart		delocalised electrons.	Properties	High melting point, does not
Intermolecular	A weak electrostatic force that		easily, excellent conductor	Electrical	Metals are good conductors	of giant	conduct electricity (except
force	holds two neighbouring		Uses: lubricants	conductivity of metals	because the electrons are free to move.	molecular	graphite), insoluble in water.
loice	molecules together.	Diamond	Structure: Repeating pattern of 4		Metals with more electrons in the	compounds	
Melting point of	Low because melting only	Diamona	atoms bonded to 4 others.	conductivity	outer shell – such as Al – are	Properties	High melting point, does conduct
	needs a little energy to break		Properties: Extremely hard.	of metals	better conductors than those with	of metallic	electricity, insoluble in water.
compounds	weak intermolecular forces.		Uses: Cutting tools and drills	ormetais	fewer – such as Li – because there	compounds	
•	Do not conduct because there	Graphene	Structure: A single layer of atoms		are more delocalised electrons	Bonding	The ideas and drawings that we
	are no electrons that are free		in a honeycomb pattern.		that are able to move.	models	use to explain the bonding of
simple molecular	to move.		Properties: Very strong, excellent	Malleable	When a substance dents when it is		atoms.
compounds			conductor.	mancable	hit instead of shattering.	Problems	 Dot and cross diagrams make
Examples of	Hydrogen gas, oxygen gas,		Uses: None yet, but potentially	Malleability of	Metals are malleable because the	with	electrons seem different, they are
simple molecular	water, carbon dioxide,		many.	metals	atoms are arranged in regular	bonding	not
substances	methane.	Buckminster	Structure: Ball-shaped molecules		sheets and these sheets can easily	models	- Atoms appear stationary but are
Giant molecular	A structure made of a	fullerene	of C ₆₀ .		slide over each other when hit.		actually vibrating
structure	repeating pattern of atoms		Properties: Low melting point				- Atoms don't appear to be
	covalently bonded together.		Uses: None	Melting point	High because melting them		touching when they actually are.
Melting point of	High because melting requires	Carbon	Structure: Cylinders made of	of metals	requires breaking the strong force		H
giant molecular	breaking strong covalent bonds.	nanotubes	carbons bonded in a honeycomb pattern.		of attraction between the lattice		н <u> </u>
compounds	Do not conduct (except		Properties: Very strong, excellent		of metal ions and the cloud of	СН	I I
	graphite) because there are no		conductors		delocalised electrons.		΄ ή
simple molecular	electrons free to move.		Uses: Strong and flexible			molecular	formula structural formula (stick bonds)
compounds	electrons nee to move.		materials, electronics.				(Stick Donds)
	Silicon dioxide (silica),			(+		(H	Д (Н)
	diamond, graphite.			strong		НАС	НАСАН
substances				bonds			
	A large molecule made of a					(н	
-	small unit repeated many		Tel Tel		I	full dot	and dot and cross
	times.			(+	-) $(+)$ $(+)$ $(+)$ $(+)$	cross dia	
N 4	A small molecule that can be	weak-			*11		Н
Monomer	A sindi molecule that can be	forcos					
wonomer	joined together many times to	forces between		TI G		H	

B Metals consist of stacked layers of ions in a 'sea' of delocalised ('free') electrons.

H ball and stick