Triple Science - Chemistry

Isotopes

isotopes

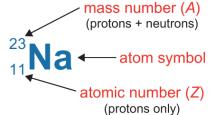
Nuclear

fission

Uses of fission Relative

SC3-4 Knowledge organiser

SC3-4: Atoms and the periodic table


Sequence

- 1. Structure of atoms
- Detailed structure of atoms
- Isotopes
- Mendeleev's periodic table
- The modern periodic table
- Electron configuration

1. Structure of atoms			
Particle	The tiny pieces that all matter is		
	made from.		
Atom	The smallest independent particle.		
	Everything is made of atoms.		
Size of atoms	About 1 x 10 ⁻¹⁰ m in diameter.		
Dalton's	- Tiny hard spheres		
model of	- Can't be broken down		
atoms	- Can't be created or destroyed		
	- Atoms of an element are identical		
	- Different elements have different		
	atoms		
Subatomic	Smaller particles that atoms are		
particles	made from.		
Proton	Mass = 1		
	Charge = +1		
	Location = nucleus		
Neutron	Mass = 1		
	Charge = 0		
	Location = nucleus		
Electron	Mass = 1/1835 (negligible)		
	Charge = -1		
	Location = shells orbiting nucleus		
Nucleus	Central part of an atom, 100,000		
	times smaller than the overall atom		

neutron

2. Detailed structure of atoms		
Alpha particle	Small positively charged particle	
	made of two protons and two	
	neutrons.	
Scattering	When particles bounce back or	
	change direction.	
Rutherford's	Fired alpha particles at gold leaf,	
experiment	used a phosphor-coated screen	
	to track where they went.	
Rutherford's	Most alpha particles went	
results	through, some scattered	
	(changed direction).	
Rutherford's	Scattered particles hit a solid	
explanation	nucleus. Most did not hit it,	
	therefore nucleus is small	
Atomic number	The bottom number on the	
	periodic table, gives the number	
	of protons and electrons.	
Atomic mass	The top number on the periodic	
	table, gives the total protons and	
	neutrons together.	
Number of		
	The atomic number.	
protons	The atomic number.	
protons Number of	The atomic number. The atomic number.	
•		
Number of		
Number of electrons	The atomic number.	
Number of electrons Number of	The atomic number. Atomic mass minus atomic	
Number of electrons Number of neutrons	The atomic number. Atomic mass minus atomic number.	

. Det	alled structure of atoms
cle	Small positively charged particle
	made of two protons and two
	neutrons.
	When particles bounce back or
	change direction.
's	Fired alpha particles at gold leaf,
	used a phosphor-coated screen
	to track where they went.
's	Most alpha particles went
	through, some scattered
	(changed direction).
's	Scattered particles hit a solid
1	nucleus. Most did not hit it,
	therefore nucleus is small
nber	The bottom number on the
	periodic table, gives the number
	of protons and electrons.
S	The top number on the periodic
	table, gives the total protons and
	neutrons together.
	The atomic number.
	The atomic number.
	Atomic mass minus atomic
	number.
	Equal, because each negative

			c 11 c.6.11 ca a v c. a 6 c c. 11 c 11 a cocc	
	atomic	of all of the isotopes of an element.		
	mass, A _r			
	Isotopic	The percentage of an element that is		
	abundance	made of a particular isotope.		
ber	Calculating	- Multiply each mass by the decimal %		
	Ar	- A	dd these up	
dic		Note: (decimal % = %/100)		
and	4	4. Mendeleev's periodic table		
	Dmitri		Russian chemist, developed the	
	Mendeleev		periodic table.	
	Mendeleev's		Ordered by increasing A _r , some	
			elements switched according to	
			their properties.	
	Chemical		Includes reaction with acid and	
	properties		formula of oxide.	
:	Physical		Includes melting point and density.	
itive	properties			
	Gaps in		Mendeleev left gaps where no	
	Mendeleev	's	known element fitted and	
	periodic table		predicted these would be filled	
			with newly discovered elements.	
	Eka-		An element that Mendeleev	
	aluminium		thought would fill a gap. He	
			predicted its properties, which	
			matched gallium when discovered.	

3. Isotopes

Describing Mass after the name (e.g. boron-10)

smaller stable ones.

neutrons.

Atoms with the same number of

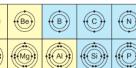
protons but different number of

or superscript mass before the symbol

Large unstable atoms break into two

Nuclear power, nuclear weapons.

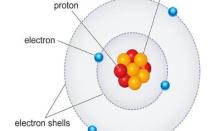
The weighted average of the masses


5. The modern periodic table		
Noble	Gases that do not react: He, Ne, Ar, Kr.	
gases		
Moseley's	Fired electrons at samples of elements	
experiment	and measured X-rays produced.	
Moseley's	Energy of x-rays produced	
results	proportional to the positive charge of	
	the element.	
Conc. from	The atomic number must be the	
Moseley's	number of protons in the atoms.	
work		
Pair	Elements (like Ar and K) that are not in	
reversals	order of increasing mass.	
Explaining	It means elements should be order	
pair	elements by increasing atomic number	
reversals	instead.	

6. Electron configuration				
Shells	Electrons orbit atoms in shells.			
First shell	Holds up to two electrons.			
Second shell	Holds up to eight electrons.			
Third shell	Holds up to eight electrons.			
Number of	Given by the atomic number.			
electrons				
Filling shells	Fill shells from the first shell out.			
	Move up a shell when current one is			
	full.			
Electron	The number of electrons in each			
configuration	shell (e.g. Al is 2.8.3).			
Outer shell	The last shell with any electrons in it.			
Groups	Columns in the periodic table, tell			
	you the number of electrons in the			
	outer shell.			
Periods	Rows in the periodic table, tell you			
	the number of electron shells.			
1 2	3 4 5 6 7			

om symbol	
number (Z)	

Subatomic particle	Relative charge	Relative mass
proton	+1 (positive)	1
electron	-1 (negative)	1/1835 (negligible)
neutron	0 (no charge)	1



He

