

Triple Science - Chemistry

SC22-24 Knowledge Organiser

distillate – condensed

SC22	-24: Organic Chemistry	Number of carbons in	Prefix	Alkane	Molecular formula	Structural formula	Name	1 f	Molecular Formula	Structural formula			condenser – cools the gases and turns them
 Alkanes Reactio 	Sequence and alkenes ns of alkanes and alkenes	the chain	meth-	methane	CH ₄	н Н—С—Н Н	ethene	(- ₂ H ₄	H H C=C H H	fractionating column – helps		back into liquid
 Ethano Alcohol Cara pr 	l production s	2	eth-	ethane	C ₂ H ₆	H H H-C-C-H H H	propene	e (L₃H ₆	$\begin{array}{c} H & H & H \\ H - C - C = C \\ H & H \end{array}$	separation by condensing some vapour back into the flask		A
 Core pr Carbox Additio 	ylic acids n polymerisation	3	prop-	propane	C ₃ H ₈	H H H H-C-C-C-H H H H H H H	butene	(E ₄ H ₈	$\begin{array}{ccccc} H & H & H & H \\ - & - & - & - \\ H - C - C - C = C \\ - & - & - \\ H & H & H \end{array}$	filtered fermente	d k	fraction
 8. Polyme 9. Conder 10. Probler 	r properties and uses Isation polymers ns with polymers	4	but-	butane	C ₄ H ₁₀		Ethanol	3.	Ethanol pro	oduction found in alcoholic rmula is CaHrOH . It can	(about 10% ethanol)		
1	Allyanas and allyanas	Z. Re	on W	hen a cor	npound re	eacts with			also be used	as a fuel for vehicles	heater-		∧
Hydrocarbon	A compound that contains	Oxidation	ox Ga	xygen pro aining oxy	ducing a f	lame. sing electrons	-		and the raw chemical ind	material for the lustry.) fractional distilla	tion of an ethanol solution	
Alkanes	A hydrocarbon in which all of the bonds between the carbon atoms	Complete combustic	Co on wa	ombustion ater and o	n that pro carbon dic	duces only oxide and	Sugar		sugars are si substances t called carbo	mail, soluble hat belong to a group hydrates.	Alcohol	4. Alconois A homologous se that contain the	ries of compounds -OH functional
Conoral	are single bonds. They have the general formula C _n H _{2n+2} .	Incomplet combustic	e Co	ombustion	n that pro carbon did	duces a bxide. carbon	Carbohyd	rates	Carbohydrat made of car	es are compounds bon hydrogen and		group and the ge C _n H _{2n+1} OH	neral formula
formula	proportions of different atoms in molecules of a homologous series.		m pr	ionoxide, roduces le	carbon an ess energy	d water and	Starch		oxygen. Starch is a lo	ong polymer made up	Organic compound	A compound that framework of car	t has the central bon atoms onto
Homologous series	A family of compounds that have the same general formula and similar properties, but have	The bromi water test	i ne W all re	/hen brom kane and etains the	nine water shaken th colour of	r is added to an le product the bromine	Enzymes		Enzymes are which speed within living	biological catalysts, up chemical reactions things.		elements are atta organic (CH_4) but not (CO_2) as it do	acoms and other ached. Methane is carbon dioxide is es not contain any
Saturated	different numbers of carbon atoms. A molecule that contains only single bonds between the carbon atoms in		W	/hen bron kene and	nine water shaken th	r is added to an le colour of the	Fermenta	tion	The process enzymes in y into ethanol	carried out by yeast that turns sugars and carbon dioxide.	Methanol	hydrogen atoms. The simplest alcc CH₃OH.	hol, its formula is
Alkenes	A hydrocarbon in which there are one or more double bonds between		br pr w	romine wa roduct is c orks beca	ater is lost colourless use the C	and the The test C double bond			The tempera fermentation carefully cor	ature and pH of the n vessel must be ntrolled to avoid	Propanol	The third members series, its formula	er of the alcohol a is C_3H_7OH .
Unsaturated	carbon atoms. They have the general formula C _n H _{2n} . A molecule that contains one or	Addition	re co	eacts with	bromine promo-alk	to form a ane.	Anaerobio respiratio	: n	denaturing t A type of res occurs in the	he enzymes. spiration that only absence of oxygen.	methanol	CH ₃ OH	H H-C-O-H
P	more double bonds between the carbon atoms in a chain.	reaction	A CC M	ombine to	form one	e larger product			Yeast respire the ferment	e anaerobically during ation process.	ethanol	C ₂ H ₅ OH	н Н Н Н-Ç-Ç-О-Н
group	An atom or group of atoms in a molecule that is mainly responsible for the molecule's chemical reactions and properties.	ethene	+ br	omine -	→ 1	,2-dibromoethane Ḥ Ḥ	Fractional distillation	n	A method of of liquids wi points into in	f separating a mixture th different boiling ndividual fractions.	propanol	C ₃ H ₇ OH	H H H H H H H-C-C-C-O-H H H H
Isomers	Molecules with the same molecular formula but different arrangements of atoms.	 C=C H H	+	Br ₂ -		 H—С—С—Н Br Br	Distillate		The liquid pr gases during	roduced by condensing g distillation.	butanol	C₄H₀OH	H H H H H-C-C-C-O-H H H H H

Triple Science - Chemistry

SC22-24 Knowledge Organiser

5. Core practical – The combustion of alcohol						
Aim	Investigate the temperature rise					
	by the combustion of the alcohols					
	ethanol, propanol, butanol and					
	pentanol.					
Your task	You will investigate and compare the second s					
	energy given out by the combustion					
	of different alcohols. To do this, you					
	will measure the temperature rise of					
	a known mass of water caused by the					
	combustion of ethanol, propanol,					
	butanol and pentanol.					
Method	•					
Wear eve protection. Do not fill the alcohol burner						

Wear eye protection. Do not fill the alcohol burner if there are any naked flames nearby.

- Measure the mass of an alcohol burner and cap. Record the mass and the name of the alcohol.
- Place the alcohol burner in the centre of a heat-resistant mat.
- Use a measuring cylinder to add 100cm³ of cold water to a conical flask,
- Measure and record the initial temperature of the water and clamp the flask above the alcohol burner.
- Light the wick of the burner and allow the water to heat up by 40°C.
- Replace the cap on the burner and measure and record the final temperature of the water.
- g. Measure the mass of the alcohol burner and cap again and record the mass.
- h. Calculate the mass of the alcohol burned to produce a 1°C rise in temperature.
- Repeat steps a-h using fresh, cold water and a different alcohol.

Considering To calculate the mass of the alcohol

your results burned to produce a 1°C rise in temperature you need to divide the mass of alcohol burned by 40.

<u>Mass of alcohol burned</u> = mass 40 require

B investigating energy in fuels

The amount of energy stored in 1 litre of some different fuels

A Ethane and ethanol are both organ compounds but are in different homologous series.

	6. Ca	rboxylic a	cids		7. Ac	ddition polymerisation				
Carboxyli	i c A hom	A homologous series of compounds			lymers	A large molecule made of a small				
acid	that co	that contain the –COOH functional				unit repeated many times.				
	group	group and the general formula			onomers	A small molecule that can be				
	C _n H _{2n+}	$C_nH_{2n+1}COOH$. They all form				joined together many times to				
	solutio	solutions with a pH of less than 7,				form a polymer.				
	react	react with metals to form a salt and			Polymerisation A reaction in which a large					
	hydro	hydrogen, reacts with bases to form				number of small molecules				
	a salt	and water a	and reacts with			(monomers) join together to forn	n			
	carbo	nates to for	m a salt, water and			a long chain molecule (polymer).				
	carbo	n dioxide.		Ad	ldition	A type of polymerisation in which	۱			
Methano	ic The si	mplest cark	ooxylic acid, its	ро	polymerisation the monomers add on to each					
acid	formu	la is HCOO	Н.			other and no small molecules are	:			
Ethanoic	acid The ca	arboxylic ac	id found in vinegar,			eliminated.				
	its for	mula is CH₃	COOH. It can be	Re	peating unit	The part of a polymer that can be	è			
	made	by oxidisin	g ethanol.			repeated many times to form the	;			
Propanoi	c The th	ird membe	er of the carboxylic			polymer chain.				
acid	acid se	eries, its foi	rmula is C_2H_5COOH .	Sy	nthetic	A polymer that is manufactured in	n			
Oxidising	A subs	stance that	causes another	ро	lymer	a laboratory or factory.				
agents	substa	ance to be o	oxidised in an	Na	itural	A substance that exists naturally				
	oxidat	ion reactio	n.	ро	lymers	as a polymer in plants, animals				
oxygen	Ar	n oxygen mol	ecule collides			etc., such as DNA, starch and				
	wi	th the function	nal group of an			proteins.				
	et by	hanol molecu drogen atom	ile and two	DN	A	Deoxyribonucleic acid is made				
	ily	alogen atom	ale removed.			from four different monomers				
			The earliest store that			called nucleotides.				
	20		has lost the hydrogens	Pro	oteins	Proteins are polymers made from	۱			
			forms a double bond	_		amino acids.				
5	O		with an oxygen atom.	Sta	arch	Starch is a polymer made from a				
etha	nol		🔰 🥊 🚽			sugar called glucose.				
The hydr the ethar an oxyge water mo	ogen atoms fi nol combine w n atom to forr plecule.	rom vith m a water	+ ethanoic acid	H H		H H H H H H H H H H H H H H H H H H H	e ules omers)			
Name	Molecu	lar formula	Structural formula			addition polymerisation				
methanoic	acid HCOOH		о н-с ^{//} о-н		Н Н Н	▼ Н Н Н Н Н H H Part of ↓ ↓ ↓ ↓ ↓ ↓ poly(e/	f a thene)			
ethanoic ac	id CH ₃ COOF	4	$\begin{array}{c} H & O \\ H - C - C \\ H & O - H \end{array}$		—C—C—C— H H H	—С—С—С—С—С—С— moleci Н Н Н Н Н Н Н (polym	ule ner)			
propanoic a	acid C ₂ H ₅ COO	Η	нно с// нно-н		This can H	be written as an equation:				
butanoic ac	id C ₃ H ₇ COO	Н	ннн о н-с-с-с-с ннн о-н		n C					
						- ' <i>n</i>				

Triple Science - Chemistry

SC22-24 Knowledge Organiser

8. Poly	mer properties and uses			9. Co	ond
Polythene	A common polymer made of	Ρ	olye	ster	Th
	ethene monomers. It is a flexible,				lar
	cheap and a good insulator.	С	ond	ensation	W
	Making it suitable for making	р	olyn	nerisation	an
	plastic bags, plastic bottles, cling				su
	film and polytunnels.				gr
Poly(propene)	A common polymer made of				со
	propene monomers. It is flexible				gr
	and does not shatter. Making it				fu
	useful for making buckets, crates,				са
	ropes and carpets.				-C
Poly	A polymer, also known as PVC,				m
(chloroethene)	made of dichloroethene				loi
	monomers. It is tough, a good				ha
	insulator and can be made hard or				ea
	flexible. Making it useful for	Ε	ster		Es
	making window frames, gutters				со
	and insulation for electrical wires.				-C
Poly (tetra	A polymer, also known as PTFE or				
fluoroethene)	Teflon, made of tetrafluoroethene		н	ſ,	h
	monomers. It is tough and				Ĵ
	slippery. Making it useful for non-		n	н-0-0	"
	stick coatings on frying pans and				0
	cooking utensils, stain proof				
	clothing and carpets.			L	r 14/
	noh/oh/rana)				
	poly(styrene)			carboxylic	acio
	polystyrene)				

	poly(styrene) (common name: polystyrene)
poly(tetrafluoroethene) (common name: PTFE) poly(propene (common nar) (common name: PVC) ne:
polypropylene common name: polythene)	

A There are many different polymers and their uses depend on their properties.

9. Co	ondensation p	olymers	;		
r	7	Finite			
	large numbers	of ester l	inks.		resources
ation	When monome	ers join to	ogether	٦ ۱	
sation	and eliminate a	a small m	olecule,		Non-
	such as water.	The func	tional		renewabl
	group that all p	olyester	molecules		
	contain is -COC		Biodegrad		
	group is forme	d when a	n alcohols		-
	functional grou	ip -OH ar	id a		Non-
	carboxylic acid	s functio	nal group		biodegrad
	-COOH react to		Incinerate		
	molecule and t	a			
	long chain each				
	have two funct	t			
	each end.				
	Esters are orga	nic comp	ounds that	t	
	contain the fur	nctional g	roup		Landfill
	-COO	-			
				-	
			. 1		
(0	H F			
1-0-0	.—с - о—н + н-				Recycling
			'		
nonome					
rboxylic		11			

10. P	10. Problems with polymers						
ite	Something useful that is no longer						
ources	made or which is being made very						
	slowly.						
n-	Any energy resource that will run						
ewable	out because you cannot renew						
	your supply of it, e.g. oil.						
degradable	A substance that can be broken						
	down by microorganisms.						
n-	A substance that cannot be broken						
degradable	down by microorganisms.						
inerated	When waste is burnt in order to						
	dispose of it. The heat generated						
	can be used to generate electricity.						
	The waste products are fly ash,						
	carbon dioxide and acid rain						
	forming gases.						
ndfill	When waste is buried in a large						
	hole in the ground. The rotting						
	waste generates large amounts of						
	methane and carbon dioxide,						
	which contribute to global						
	warming.						
cycling	Converting waste materials into						
	new products.						

A The extraction and transport of crude oil can have disastrous consequences for wildlife.

B These plastic items were found in the stomachs of dead albatrosses in Hawaii. The plastics are non-biodegradable and so they will not rot if they get into the sea. The albatrosses, such as the one in the photo, mistake the items for food.

symbol	polymer	uses
PET	poly(ethylene terephthalate)	some bottles, food trays, duvet fillings
HDPE	high-density poly(ethene)	some bottles, buckets
PVC	poly(chlorothene)	soft toys, window frames
LDPE	low-density poly(ethene)	cling film, bags
PP PP	poly(propene)	crisp packets, carpet rope
PS	poly(styrene)	egg boxes, foam packaging
OTHER	other polymers	