

SC14-16: Quantitative analysis

Sequence

- 1. Yields
- 2. Atom economy
- 3. Concentrations
- 4. Titrations and calculations
- 5. Core practical Acid-alkali titration
- 6. Molar volume of gases
- 7. Fertilisers and the Haber process
- 8. Factors affecting equilibrium
- 9. Chemical cells and fuel cells

	1. Yields			
Theoretical	The maximum calculated amount of			
yield	a product that could be formed			
	from a given amount of reactants.			
Actual yield	The amount of product obtained			
	from a chemical reaction.			
Percentage	The actual yield divided by the			
yield	theoretical yield, as a percentage.			
	<u>Actual yield</u> x 100 = Percentage Theoretical yield yield			
Incomplete reaction	When a reaction has not been fully completed, meaning that not all of the reactants have been converted			
	percentage yield.			
Side	When an unwanted reaction takes			
reactions	place during a targeted reaction,			
	resulting in unwanted products			
	being formed and reducing the			
	percentage yield.			

B When you bake a cake, some of the ingredients may get left behind on the scales, in the mixing bowl or in the cake tin. In a chemical reaction, some of the reactants and products may get left behind on the apparatus.

2. Atom economy					
Atom	The percentage, by mass, of				
economy	reactants that are converted into				
	useful products.				
	<u>Useful product</u> x 100 = Atom				
	All products economy				
By-product	Substances produced in chemical				
	reactions in addition to the desired				
	product.				
Reaction	A series of reactions needed to				
pathways	make a particular product.				
Useful	The desired product from a				
products	chemical reaction that can be used				
	to synthesise other useful products				
	or can be used for a function on its				
	own.				
Waste	The undesired product of a				
products	chemical reaction that has no				
	functional uses and so does not				
	generate a profit. They often cost				
	money to dispose of.				
	HH H				

A The atom economy for making ammonia is 100%.

HIH

Triple Science - Chemistry

3. Concentrations				
Concentration in g/dm ⁻³	The mass of a solute dissolved in a solvent to form a solution.			
	<u>Mass of solute (g)</u> = Concentration Volume of solvent (dm ³⁾ (g/dm ⁻³)			
Concentration in mol/dm ⁻³	The moles of a solute dissolved in a solvent to form a solution.			
	<u>Moles of solute (mol)</u> = Concentration Volume of solvent (dm ³⁾ (mol/dm ⁻³)			
Decimetre (dm³)	A decimetre is a unit of volume equal to 1 litre or 1000cm ³ . To convert from cm ³ to dm ³ divide the volume by 1000.			

C equation triangle for working out concentration

E equation triangle for converting concentrations

A A volumetric flask is used for making an accurate solution.

B Fill the flask so the bottom of the meniscus is on the graduation mark.

SC 14-16 Knowledge organiser

Triple Science - Chemistry

SC 14-16 Knowledge organiser

4.	Titrations and calc	ulations		Titration calculations		5. C	ore practical – Acid-alkali titration	
Burette	A piece of apparatu accurately measure solution that has be titration.	s used to the volun en added	ne of during a	Calculations carried out u reacting solutions and the the solutions to calculate	using the exact volumes of e concentration of one of the unknown	Aim Task	Carry out an accurate acid-alkali titration, using a burette, a pipette and a suitable indicator. You will carry out a titration to find the	
Graduated pipette	A piece of apparatu accurately measure solution during a tit	s used to a set volu ration.	me of	Ca(OH) ₂ + 2HCl	$\rightarrow CaCl_2 + 2H_2O$		exact volume of hydrochloric acid needed to neutralise 25.0 cm ³ of a solution of sodium hydroxide.	
Titration	A technique in volu that is used to find t of solutions which r other.	metric ana he exact v eact with	ilysis volumes each	15.0 cm ³ of calcium hydro 9.1cm ³ of 2.000 mol/dm ⁻³ Calculate the concentrati hydroxide.	oxide was neutralised by ³ hydrochloric acid. ion of the calcium	Method	 Rinse a burette with hydrochloric acid, then fill the burette with acid, making sure the jet below the tap is full. 	
Rough titration	A quick titration tha identify the rough e you to then carry ou titrations accurately quickly.	t allows yond point, and point, and point, and related	ou allowing e ively	Step 1: Identify the stoich the reactants e.g. $Ca(OH)_2 + 2HCI = 1:2$ Step 2: Convert the volum cm ³ to dm ³ by dividing the	hiometric ratio between nes of each reactant from em by 1000 e.g.		 Record the initial volume of acid in the burette, Rinse the pipette with sodium hydroxide solution, then fill the pipette to the 25.0cm³ mark and 	
Rough end point Concordant	The approximate vo solution required to another solution. Th point allows you to should slow the flow and add it drop wise exact volume is add c Results that are in a	lume of a react full ne rough e identify w v of the so e to ensure ed. greement	y with nd hen you blution e the to 0.1	$Ca(OH)_2 = 15/1000 = 0.01$ HCl = 9.1/1000 = 0.0091 of Step 3: Calculate the num reactant with the known volume e.g. Moles of HCl = 2.00 x 0.00 Step 4: Use the stoichiom	15 dm ³ dm ³ nber of moles of the concentration and 091 = 0.0182 netric ratio identified in		 empty the solution into a conical flask, Add a few drops of phenolphthalein to the flask and place it on a white tile under the burette. Add the acid to the sodium hydroxide solution while swirling the flask. 	A a titration experiment
Reagent F	Ratio Concentration (mol/dm ⁻³⁾	Volume (dm ⁻³)	Moles	step 1 to work out the nu reactant with the unknow $Ca(OH)_2 + 2HCI = 1:2$ Moles of HCI/2 = Moles o	Imber of moles of the wn concentration e.g. of Ca(OH)2		 colour add the acid drop by drop until the end point is reached, 7. Record the final volume of acid in the burette, 	AS \$0/385 \$1,305 20 20
NaOH				0.0182/2 = 0.0091 moles Step 5: Calculate the unkiconcentration by dividing	nown reactants g the number of moles by		 Repeat the experiment, apart from the initial rinsing of the burette and pipette, until concordant results are obtained. 	0°C 05 ml 0
11103				0.0091/0.015 = 0.61 mol/	/dm ⁻³	Results	When considering the results, you should discard the initial rough titration, then use the two concordant results to	1 23
25.0 cm³ of hydroxide.	⁻ Sulphuric acid was Calculate the conce	2KOH + neutralis entration	$H_2SO_4 \rightarrow$ sed by 78 of the se	K ₂ SO ₄ + 2H ₂ O 3.0cm ³ of 1.500 mol/dm ⁻ ulphuric acid.	⁻³ potassium		calculate the average volume of acid used. This will provide you with the volume of acid required to neutralise the alkali, which you can use to calculate the	B The initial volume of solution in the
Reagent KOH H ₂ SO ₄	Ratio Concentra	ation (mo	ol/dm⁻³)	Volume (dm ³)	Moles		you can use this volume to neutralise the alkali without the indicator to form a pure sample of the salt using crystallisation.	burette is 0.20 cm ³ and the final burette reading is 22.20 cm ³ .

Triple Science - Chemistry

vield of ammonia.

temperature.

moves in the direction of

the endothermic reaction

moves towards the side

of the balanced equation

moves away from the

balanced equation

reacting substance in the

reacting gas

no change

catalyst added

with the fewer molecules of

SC 14-16 Knowledge organiser

6. Molar volume of gases		
Avogadro's law	This is the number of particles in one mole of a substance (6.02x10 ²³ mol ⁻¹)	Fer
Molar gas volume	The volume occupied by one mole of molecules of any gas. It is 24 dm ³ or 24000 cm ³ at room temperature and pressure.	Rev rea For rea

B n = amount in mol, v = volume of gas, $V_m = molar volume$

6. Molar volume of gases
At normal room temperature and
pressure the molar volume is 24 dm ³ .

 What would the volume of 4 moles of oxygen be?

- What would the volume of 0.5 moles 2. of carbon dioxide be?
- What would the volume of 48 moles 3. of helium be?
- How many moles of argon would a 1. 100cm³ light bulb hold?

7. Fertil	isers and the Haber proce	ss 8. Fac
Fertilisers	Soluble compounds added to	the Closed
	soil to replace minerals used	up by system
	plants.	
Reversible	A reaction that can work in b	oth High
reactions	directions.	pressure
Forward	The reaction of reactants rea	icting
reaction	to form the products in a rev	ersible
	reaction, or the reaction mov	ving
	from left to right.	
Backward	The reaction of products bre	aking
reaction	back down to form the react	ants
	again in a reversible reaction	, or the
-	reaction moving from right to	o left.
Haber	The industrial process used t	o form
process	ammonia, named after the G	ierman Hign
A	Chemist Fritz Haber.	temperature
Ammonia	An alkaline gas that can be u	sed to
	create lertilisers, cleaning pr	oducis
Dunamic	Moon the forwards and back	words
oguilibrium	volient the forwards and back	mical
equilibrium	reaction are happening at th	e come
	rate and time so that there	is no
	increase or decrease in the a	mount
	of reactants or products.	
The Habe	r Process - manufacture of ammo	nia Catalyst
Click on the play	sequence button to explore the animation as	a whole.
	recycle	
compressor		lor
T T		monia
	catalyst (bu	t not the
mixer	450°C	er gases) Change in
	200atm 0 0	ifies conditions
		temperature
		increased
		pressure increased
nitrogen		involving gases
hudgen	ammo	nia out
nyarogen	recycle line (72%) (28%)	concentration of a
2	(hydrogen & nitrogen)	reacting substance
		IIICIEdSeu

