SC14-16: Quantitative analysis

Sequence

1. Yields
2. Atom economy
3. Concentrations
4. Titrations and calculations
5. Core practical - Acid-alkali titration
6. Molar volume of gases
7. Fertilisers and the Haber process
8. Factors affecting equilibrium
9. Chemical cells and fuel cells

Theoretical yield	The maximum calculated amount of a product that could be formed from a given amount of reactants.
Actual yield	The amount of product obtained from a chemical reaction.
Percentage yield	The actual yield divided by the theoretical yield, as a percentage. Actual yield x 100 = Percentage Theoretical yield
Incomplete reaction	When a reaction has not been fully completed, meaning that not all of the reactants have been converted into products and thus reducing the percentage yield.
Side reactions	When an unwanted reaction takes place during a targeted reaction, resulting in unwanted products being formed and reducing the percentage yield.

B When you bake a cake, some of the ingredients may get left behind on the scales, in the mixing bowl or in the cake tin. In a chemical reaction, some of the reactants and products may get left behind on the apparatus.

2. Atom economy	
Atom economy The percentage, by mass, of reactants that are converted into useful products. Useful product x $100=$ Atom All products economy	
By-product	Substances produced in chemical reactions in addition to the desired product.
Reaction pathways	A series of reactions needed to make a particular product.
Useful products	The desired product from a chemical reaction that can be used to synthesise other useful products or can be used for a function on its own.
Waste products	The undesired product of a chemical reaction that has no functional uses and so does not generate a profit. They often cost
money to dispose of.	

A The atom economy for making ammonia is 100%.

	3. Concentrations
Concentration in $\mathrm{g} / \mathrm{dm}^{-3}$	The mass of a solute dissolved in a solvent to form a solution. Mass of solute (g) = Concentration Volume of solvent $\left(\mathrm{dm}^{3}\right) \quad\left(\mathrm{g} / \mathrm{dm}^{-3}\right)$
Concentration in $\mathrm{mol} / \mathrm{dm}^{-3}$	The moles of a solute dissolved in a solvent to form a solution. Moles of solute (mol) $=$ Concentration Volume of solvent $\left(\mathrm{dm}^{3}\right) \quad\left(\mathrm{mol} / \mathrm{dm}^{-3}\right)$
Decimetre $\left(\mathrm{dm}^{3}\right)$	A decimetre is a unit of volume equal to 1 litre or $1000 \mathrm{~cm}^{3}$. To convert from cm^{3} to dm^{3} divide the volume by 1000.

C equation triangle for working out concentration

E equation triangle for converting concentrations

A A volumetric flask is used for making an accurate solution.

B Fill the flask so the bottom of the meniscus is on the graduation mark.

SC 14-16 Knowledge organiser

Titration calculations
Calculations carried out using the exact volumes of reacting solutions and the concentration of one of the solutions to calculate the unknown

$$
\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

of calcium hydroxide was neutralised by $9.1 \mathrm{~cm}^{3}$ of $2.000 \mathrm{~mol} / \mathrm{dm}^{-3}$ hydrochloric acid. Calculate the concentration of the calcium hydroxide.
Step 1: Identify the stoichiometric ratio between the reactants e.g.
$\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl}=1: 2$
Convert the volumes of each reactant from
$\mathrm{Ca}(\mathrm{OH})_{2}=15 / 1000=0.015 \mathrm{dm}^{3}$
$\mathrm{HCl}=9.1 / 1000=0.0091 \mathrm{dm}^{3}$
Step 3: Calculate the number of moles of the reactant with the known concentration and volume e.g.

Moles of $\mathrm{HCl}=2.00 \times 0.0091=0.0182$
Step 4: Use the stoichiometric ratio identified in step 1 to work out the number of moles of the
$\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl}=1: 2$
Moles of $\mathrm{HCl} / 2=$ Moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ $0.0182 / 2=0.0091$ moles
Step 5: Calculate the unknown reactants concentration by dividing the number of moles by its volume e.g.
$0.0091 / 0.015=0.61 \mathrm{~mol}^{2} / \mathrm{dm}^{-3}$
$2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
$25.0 \mathrm{~cm}^{3}$ of Sulphuric acid was neutralised by $78.0 \mathrm{~cm}^{3}$ of $1.500 \mathrm{~mol} / \mathrm{dm}^{-3}$ potassium hydroxide. Calculate the concentration of the sulphuric acid.

A a titration experiment

B The initial volume of solution in the burette is $0.20 \mathrm{~cm}^{3}$ and the final burette reading is $22.20 \mathrm{~cm}^{3}$.

CHURCH STRETION SCHOOL	
6. Molar volume of gases law	This is the number of particles in one mole of a substance $\left(6.02 \times 10^{23}\right.$ mol $\left.^{-1}\right)$
Molar gas volume	The volume occupied by one mole of molecules of any gas. It is $24 \mathrm{dm}^{3}$ or 24000 cm^{3} at room temperature and pressure.

B $n=$ amount in mol, $v=$ volume of gas, $V_{m}=$ molar volume

6. Molar volume of gases

At normal room temperature and pressure the molar volume is $24 \mathrm{dm}^{3}$.

1. What would the volume of 4 moles of oxygen be?
2. What would the volume of 0.5 moles of carbon dioxide be?
3. What would the volume of 48 moles of helium be?
4. How many moles of argon would a $100 \mathrm{~cm}^{3}$ light bulb hold?
\qquad
\qquad

SC 14-16 Knowledge organiser

