

Triple Science - Chemistry

SC10-13 Knowledge organiser

	Electrolysis, metals, reversible		2. Half-equations (HT)	4. Core pra	ctical – electrolysis of c
reactions	, transition metals, alloys and	Half- A	n equation that shows what		solution (CP10)
	corrosion	equations h	appens to just one of the ions during	CP10 - aim	To see how the changing
	Sequence	cl	hemical reaction. Two half-		affects the rate of elect
1. Electroly	•		quations combine to give the overall	CP10 –	Clean two copper elect
•	ations (HT)		onic equation	Prepare	one anode and one cat
	of electrolysis	Half- S	how electron transfer:	electrodes	each and record mass.
	ctical – electrolysis of copper	equations C	athode (reduction):	СР10 -	Connect a variable resi
•	olution (CP10)	in	M⁺ + e⁻ → M	Setup	negative terminal of a
5. Reactivit		electrolysis A	node (oxidation):		then connect this to th
	, ment reactions		$X^- \rightarrow X + e^-$		Connect an ammeter to
•	g metals from their ores		ations will gain the same number of		terminal then connect
	n and reduction		lectrons as their charge. Anions will		anode. Place both elec
9. Life-cycle	e assessment and recycling		ose the same number of electrons as		beaker of copper sulfat
10. Dynamic			neir charge.		Switch the power supp
	to equilibrium systems (HT)	Non-metals N	lost non-metals will form molecules:	the	the variable resistor so
12. Transitio		in half- O	P_2 , F_2 , Cl_2 , Br_2 , I_2 etc – you will need	experiment	reads 0.2 A and leave f
13. Corrosion	n	equations ty	wo of them in the half-equation.	СР10 —	Carefully remove each
14. Electropi	ating	2	Products of electrolysis	Record	rinse them with water
15. Alloying	_	Discharged	Products of electrolysis When an ion loses its charge to	results	propanone. Re-weigh e
16. Uses of n	netals and their alloys	Dischargeu	become an atom		record.
		Electrolysis of	Cathode: metal	СР10 —	Repeat the experiment
	1. Electrolysis	molten salts	Anode: non-metal	Variations	current of 0.3 A, 0.4 A a
Electrolysis	Using direct current to break	lons in salt	Metal, non-metal and H ⁺ and OH ⁻	СР10 -	The anode loses mass v
	compounds down into their	solutions	because water partially ionises.	Results	cathode gains mass. Th
	elements.	Hydrogen	$2H^+(g) + 2e^- \rightarrow H_2(g)$		current the greater the
Electrolyte	Liquid used for electrolysis	half-equation			
	because ions can move – either		Metal, unless reactive metal such		assium most reactive
	molten or dissolved ionic	•	as K, Na, Li, Mg, Ca in which case		sodium
	compounds	- cathode	hydrogen.		alcium
-	Does not work as ions can't move.		Non-metal, unless sulphate salt in		nesium
solids		salt solutions	which case oxygen.	alur	ninium
Electrodes	Conducting rods placed in	- anode	which case oxygen.		carbon
	electrolyte, connected to power		Cathode: hydrogen		zinc
	supply.	sulfuric acid	Anode: oxygen		iron
Cathode	Negative electrode where cations	Purifying	Anode: impure copper		tin
	(positive ions) are discharged.	copper -	Cathode: pure copper		lead
Anode	Positive electrode where anions	setup	Electrolyte: copper sulfate solution	hy	drogen
	(negative ions) are discharged.	Purifying	Copper atoms leave the anode		copper
OIL	Oxidation Is Loss of electrons (OIL)	copper -	$(Cu \rightarrow Cu^{2+} + 2e^{-})$, travel through		silver
RIG	Reduction Is Gain of electrons	explanation	solution to the cathode		gold
1	(RIG)		$(Cu^{2+}+2e^{-} \rightarrow Cu)$. Impure atoms on	nl	atinum least reactive
AnOx	Anode is for <i>ox</i> idation		the anode fall to the bottom as	Pi-	
CaRe	<u>Ca</u> thode is for <u>re</u> duction		sludge.		
Canc	satisfie is for reduction	l			

of cop	oper sulfate	5. Reactivity			
))		Reactivity	Potassium, sodium, calcium,		
anging	the current	series (most to	magnesium, aluminium, zinc, iron,		
electro		least)	copper, silver, gold.		
electro	odes, label	Forming	The more reactive metals more		
e catho	ode, weigh	cations	easily lose electrons to form cations.		
ass. Rea		Reaction with	Metal + water → metal hydroxide +		
resist	or to the	cold water	hydrogen		
of a po	ower supply	(H ₂ O(I))			
o the	cathode.		- Potassium – violently		
er to t	the positive		- Sodium – very quickly		
nect th	is to the		- Calcium – slowly		
electro	odes in a	Reaction only	Metal + water → metal oxide +		
ulfate	solution	with steam	hydrogen		
upply	on, adjust	(H ₂ O(g))	Magnesium, zinc, iron		
or so th	ne ammeter	No reaction	Copper, silver, gold		
	20 minutes.	with water or	-		
ach el	ectrode,	steam			
	nd then with	Reaction with	Metal + acid → salt + hydrogen		
		acid			
igh each and			Sodium, potassium – violent		
nent with a		1	Calcium, magnesium, zinc, iron –		
	id 0.5 A.		steady		
	hilst the		Copper, silver, gold – no reaction		
	higher the		Disula com est accesti		
	nass change.		Displacement reactions		
the fi		Displacement	Reactions in which a more reactive		
tive	К	reactions	metal displaces a less reactive		
	Na		metal from a salt eg:		
	Ca		copper sulfate + zinc \rightarrow		
61	Mg		zinc sulfate + copper		
	Al		Does not work backwards as		
			copper is less reactive than zinc.		
	С	Redox reactions			
	Zn		and reduction happen at the same		
	Fe		time, such as displacement		
	Sn	_	reactions.		
	Pb	Redox during	The more reactive metal is		
	н	displacement	oxidised, eg:		
	Cu		$Zn \rightarrow Zn^{2+} + 2e^{-}$		
	Ag		The less reactive metal is reduced,		
	Au		eg:		
ctive	Pt		$Cu^{2+} + 2e^{-} \rightarrow Cu$		
- 1000 (T		Spectator ion	An ion that does not change during		
			a chemical reaction.		

Triple Science - Chemistry

SC10-13 Knowledge organiser

		SCHOOL				
7. Ex	tract	ing metals from	their ores		8. 0	xi
Native state		When metals ar	Oxidation	Gai	ni	
		pure form, e.g. silver and gold.		Reduction	Los	in
Ore		Rock containing	enough of a	Redox	Wh	er
		metal compoun	d to extract for		rea	ct
		profit. Normally		Reduction	Iror	n p
		sulphides of the	metal.	of iron	hea	iti
Extracting		For extracting le				
metals by		metals such as z				
heating with	ו	copper. Works b			Iror	
carbon		is more reactive		Reduction	Alu	
			+ carbon → oxide + iron	of	alu	mi
Extracting			lls more reactive	aluminium		
Extracting metals by		than carbon e.g		ore		
electrolysis		sodium, calcium	•		Alu oxio	
cicculorysis		aluminium, e.g.	-	Corrosion	Wh	
			m oxide →	Corrosion	oxy	
		aluminiur	n + oxygen	Rates of	Mo	-
Bioextractio	n		anisms to extract	corrosion	qui	
		metals.	Tarnish	Ap		
Bioleaching		Growing bacter	, and a	the		
		quality copper o	ore. The bacteria			
		produce a solut	ion of copper	9. Life	e-cy	cle
		sulfate from wh		Recycling		С
		be extracted by			n	
Phytoextrac	tion	Plants are grown that absorb		Advantage	s of	-
		metal ions as they grow. The plants are then burnt to produce		recycling		-
						-
		ash rich in meta	r compounds.			Ľ
Process	Adva	intages	Disadvantages	Disadvanta	ges	-
both		rmful gases (e.g. sulfur	very slow of recycli		•	-
bioleaching and		de) are produced	very stow	, - 8	,	tı
phytoextraction		s less damage to the		Life-cycle		L
		cape than mining		assessment	t	а
	conse	erves supplies of higher		(LCA)		٧
	grade	ores				d
bioleaching	does	not require high	toxic substances	LCA stages		-
	temp	eratures	and sulfuric acid can			n
			be produced by the			-
			process, and damage the environment			-
nhutooutractic	c	vtract motals from				-
phytoextraction		xtract metals from minated soils	more expensive than mining some ores			
	conta		growing plants			
			is dependent on			
1						

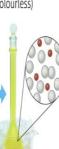
weather conditions

xidation and reduction	10	. D
ning oxygen or losing electrons	Reversible	Re
ng oxygen or gaining electrons	reaction	we
en reduction and oxidation		tu
ctions happen together.	4	Us
produced from iron oxide by	Dynamic	Th
ting with carbon:	equilibrium	fo
iron oxide + carbon 🔿		re
carbon dioxide + iron		со
is reduced, carbon is oxidised.		pr
minium is produced from	Closed	No
ninium oxide by electrolysis:	systems	eq
Aluminium oxide ᢣ	Open systems	Ga
aluminium + oxygen		eq
minium is reduced, oxygen is	Equation for	N
lised	making	
en metals slowly react with	ammonia	
gen, making them weaker.	Haber process	Fo
re reactive metals corrode more		- 2
kly.		sh
otective layer of oxide that stops		- 4
layers below from corroding.		lo
le assessment and recycling		re
Converting old waste metal into		- (
new metal that can be reused		
- Natural reserves last longer	disposal of produ	ICt
- Less pollution from mining		
- Less pollution from processing		
- Less waste in landfill		
 Often less energy used 		/
- Can be expensive	Wh	nat r
- Can use a lot of energy in	How a	
transporting, collecting, sorting	How manufac	
Looks at environmental impact of	Whe	
all stages of a product's lifecycle.	What	
We should aim to reduce all	How	will
damage.		
 Obtaining and processing raw 		
materials	1 -8	
 Making/packaging the product 		
- Using the product		
- Disposal or recycling of product	using the produc	t

10). Dynamic equilibrium] [:
eversible	Reactions that can go forwards as	Effect
eaction	well as backwards (with products	equilib
	turning back into reactants)	increas
,	Used to show reversible reactions.	tempe
ynamic	The point at which the rate of the	
quilibrium	forwards reaction and backwards	Effect
	reaction are equal, so the	equilib
	concentrations of reactants and	decrea
	products stops changing.	tempe
losed	Nothing can escape, so dynamic	
ystems	equilibrium can be reached.	Effect
pen systems	Gases can escape so dynamic	equilib
	equilibrium can't be reached.	increas
quation for	Nitrogen + hydrogen ≒ ammonia	pressu
naking	$N_2 + 3H_2 \Leftrightarrow 2NH_3$	Effect
mmonia	Exothermic \leftrightarrows Endothermic	equilib decrea
aber process	For making ammonia industrially:	pressu
	- 200 atm pressure – equilibrium	Effect
	shifts right, yield increases	
	- 450°C – equilibrium shifts left,	equilib
	lower yield but MUCH faster	concer
	reaction	Effect
	 Catalyst – increases reaction rate 	equilib
	obtaining and processing	decrea
disposal of produ	raw materials	concer
		Photo D s
		dioxide a
W	Questions to ask: nat raw materials are needed?	2NO ₂ (g
	are the raw materials processed?	nitroge
	w much energy is needed for the cture and packaging of the product?	1
	ere will the energy come from?	
Wh	at will the product be used for?	-
How	will the product be disposed of?	

manufacturing and packaging the product

11. Changes	s to equilibrium systems (HT)			
Effect on	Exothermic reaction – equilibrium			
equilibrium of	shifts left, yield decreases			
increasing	Endothermic reaction –			
temperature	equilibrium shifts right, yield			
	increases			
Effect on	Exothermic reaction – equilibrium			
equilibrium of	shifts right, yield increases			
decreasing	Endothermic reaction –			
temperature	equilibrium shifts left, yield			
	decreases			
Effect on	Equilibrium shifts to side with			
equilibrium of	fewer gas molecules			
increasing gas				
pressure				
Effect on	Equilibrium shifts to side with			
equilibrium of	more gas molecules			
decreasing gas				
pressure				
Effect on	of products – equilibrium shifts			
equilibrium of	left, yield decreases			
increasing	of reactants – equilibrium shifts			
concentration	right, yield increases			
Effect on	of products – equilibrium shifts			
equilibrium of	right, yield increases			
decreasing	of products – equilibrium shifts			
concentration	left, yield decreases			


Photo D shows how the equilibrium position of a mixture of nitrogen dioxide and dinitrogen tetroxide depends on temperature.

2NO₂(g) ≓ nitrogen dioxide (brown)

⇒ N₂O₄(g) (forward reaction is exothermic) dinitrogen tetroxide (colourless)

This changes brown NO₂ molecules '● into colourless N₂O₄ '● molecules as this is the exothermic direction, which increases the temperature.

Triple Science - Chemistry

SC10-13 Knowledge organiser

	12. Transition metals		13. Corrosion		14. Electroplating		ses of metals and their alloys
metals	Metal elements placed in the block between groups 2 and 3 in the periodic table. These metals trend to have the properties associated	Oxidise	A reaction in which oxygen is added to another substance. It can also mean the loss of an electron from an atom.	Electroplating	Using electricity to coat one metal with a thin layer of another, to improve its appearance, corrosion resistance or to make it appear	Chemical properties Physical properties	How a chemical reacts with other substances. A description of how a material behaves and responds to forces and
Malleable	with typical metals. A substance that can be hammered or rolled into shape without	Tarnish	A thin layer that appears on the surface of a metal due to oxidation. A metal is also said to tarnish as this	Galvanising	more valuable. Coating iron or steel with a thin layer of zinc to improve its	Aluminium	energy. For example a materials ability to conduct electricity or heat. A lightweight metal that resists
	shattering. A substance that can be stretched out to make wires. The transition metals form colourful	Rusting Corrosion	layer forms. The corrosion of iron or steel in the presence of both oxygen and water. The gradual deterioration of a	Tin plating	resistance to rusting. Coating the inside of steel cans with a thin layer of tin, which prevents the contents reacting with steel. Tin		corrosion and is relatively strong, making it suitable for making aeroplane parts and the outer parts of overhead power cables.
compounds Catalysts	compounds, in contrast to groups 1, 2 and 3 which tend to form white compounds. The transition metals are used to catalyse a number of different	Sacrificial	substance when it reacts with substances in the environment, for example when a metal oxidises in air. Using a more reactive metal to		cans actually only contain this thin layer, as tin is an expensive metal.	Copper	A dense metal that is a good conductor of electricity and highly resistant to corrosion, making it suitable for making electrical circuitry, wires and water pipes.
Catalytic convertor	chemical reactions. A device fitted to the exhaust system of cars/lorries which reduces the amount of harmful carbon monoxide, nitrous oxides and unburnt hydrocarbons they	protection	protect a less reactive metal from corrosion, through the transfer of electrons from the more reactive metal, which is oxidised, to the less reactive metal, which is reduced. A substance that absorbs water	silver (metal (c electr		Gold	A highly dense, soft metal that is an excellent conductor of electricity and is highly expensive. These properties make it suitable for use in microprocessors, where the speed of electricity conduction is vital and
	release. Platinum, rhodium and palladium are all used as catalysts to speed up these reactions.	powder	preventing the rusting of iron or steel. A substance that reacts with oxygen	Alloy	A mixture of two or more metals, which results in improved properties such as lower density or	Brass	jewellery to show someone's status or due its appearance. An alloy of copper and zinc which is
1 2			preventing the oxygen from reacting with, and corroding, metals.	Alloying	improved strength. The process of mixing metals to form an alloy		stronger than copper alone, making it suitable for door fixtures, statues and screws/hinges/padlocks.
TiV	Mn Fe Co Ni Cu Zn Rh Pd Ag Ag </td <td></td> <td></td> <td></td> <td>Iron with other elements deliberately added to it to make an alloy. A steel alloy containing elements</td> <td>Magnalium</td> <td>Magnalium is an alloy that contains 95% aluminium and 5% magnesium. It is used as an engineering alloy to make aircraft parts and scientific</td>				Iron with other elements deliberately added to it to make an alloy. A steel alloy containing elements	Magnalium	Magnalium is an alloy that contains 95% aluminium and 5% magnesium. It is used as an engineering alloy to make aircraft parts and scientific
W Ir Pt Au Hg				steel	such as chromium to improve its resistance to rusting. A single metallic element forming a		instruments. Magnalium is less dense and almost four times stronger than aluminium alone. Although it is
the transition metals,	with some common examples identified			pure metal	regular metallic lattice.		denser than magnesium, magnalium is twice as strong and has better resistance to corrosion.
		A The Statue of Liberty		alloy differe	distorted structure makes it difficult for layers to move past each other	Density (g/cm³)	The mass of an object divided by its volume, which shows us whether a substance will be heavier than another.
impurit	beryl is a colourless mineral. Iron ties turn it into aquamarine, a emstone.	27 tonnes of copper sh steel frame. Its green co natural layer of copper when copper tarnishes.	olour is due to a D blocks of sacrificial metal bolted onto a ship's hull	push		Relative strength	The strength of one material compared to that of another.