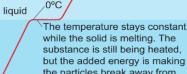


Triple Science - Chemistry

SC1-2: States of matter and separating Heating curve for a

substances

Sequence


- 1. States of matter
- Mixtures 2.
- 3. Filtration and crystallisation
- Paper chromatography 4.
- Distillation 5.
- 6. Core practical investigating inks (CP7)
- 7. Drinking water

	1. States of matter		
Particle	The tiny pieces that all matter is made		
	from.		
Atom	The smallest independent particle.		
	Everything is made of atoms.		
Molecule	A particle made from two or more		
	atoms bonded together.		
State of	Whether a substance is solid, liquid or		
matter	gas.		
Particle	A theory that uses the idea of		
model	particles to explain the differences		
	between solids, liquids and gases.		
Solid	Particle arrangement: Regular		
	pattern, touching each other.		
	Particle movement: Vibrating around		
	a fixed point.		
Liquid	Particle arrangement: Random,		
	touching each other.		
	Particle movement: Moving around		
Gas	Particle arrangement: Random		
	Particle movement: Moving quickly		
State	Solid to liquid = melting		
changes	Liquid to solid = freezing		
	Liquid to gas = evaporating or boiling		
	Gas to liquid = condensation		
	Solid to gas = sublimation		
	Gas to solid = deposition		

once fully liquid, levels out whilst built boiling and rises again once fully gas.						
	Particle di		Arrangement of particles			
Gas			random far apart	fast in all directions		
Liquid			random close together	move around each other		
Solid			regular close together	vibrate about fixed positions		
		2	. Mixtures			
Element A subst type of				rom only one		
				rom two of nents bonded		
Mix	ture	A substan	ance made o ices (elemen unds) mixed	of two of more its or but not bonded		
MeltingMixtures do not melt at a fixedpoint oftemperature but melt gradually				elt gradually		
mixturesover a range of temperatures.HeatingThe flat sections of the heatingcurves ofcurves of a pure substance aremixturessloped for a mixture.				the heating ostance are		
	The temperature stays constant while the liquid is boiling. The particles are escaping from the liquid to form a gas. gas					
gas liquid 0°C liquid 0°C						

Temperature rises as you heat a solid,

levels out as it melts, continues rising

3. Filt	ration and crystallisation					
Dissolve	When a substance mixes with a	4. Pap	4. Paper chromatography			
	liquid by breaking down into	Paper	A method of separating out			
	individual particles (atoms or	chromatography	mixtures of liquids to show			
	molecules).		what is in them, by letting			
Soluble	When a substance can be		them travel up a piece of			
	dissolved by a liquid.		chromatography paper.			
Insoluble	When a substance can't be	Chromatography	1. Draw pencil line on paper			
	dissolved by a liquid.	method	2. Place sample spot on line			
Filtration	A method of separating a mixture		3. Place paper in solvent, with			
	of a liquid and an insoluble solid		solvent below pencil line.			
	by passing it through a filter		4. Allow solvent to soak up the			
	paper.		paper			
Residue	The solid that gets left behind in		5. Stop when solvent near top			
	the filter paper.		and mark how far it gets.			
Filtrate	The liquid that passes through the	Stationary phase	The substance the solvent			
	filter paper.		moves through – usually pape			
How filtration	The filter paper contains many		(Note: technically it is a thin			
works	tiny holes. The water molecules		layer of water from air that is			
	are small enough to pass through		bound to the paper molecules			
	the holes, the solid particles are	Mobile phase	The solvent.			
	too big and get trapped.	R _f (retardation	R _f = spot distance / solvent			
Solution	A mixture of a solute dissolved in	factor)	distance			
	a solvent.	Uses of R _f	R _f enables you to identify a			
Solvent	A liquid that has dissolved a		substance because for a given			
	substance, for example water.		solvent and stationary phases,			
Solute	A solid that has been dissolved,		it is unique to each substance.			
	for example salt.	Uses of	- To tell between pure and			
Crystallisation	A method of collecting the	chromatography	impure substances			
er yotanisation	dissolved solid from a solution by		- To identify substances by			
	heating it so that the solvent		comparison with known ones			
	evaporates away.		- To identify substances by			
Risks of	As the solvent boils away, the hot		calculating R_{f} .			
crystallisation	solution can spit, so you should					
er ystanisation	wear safety goggles to protect					
	your eyes.	lid (to stop				
i	Joan 2,000.	evaporation of solvent)	solvent has reached			
			this level			
	water vapour					
filter pope	N. TY	paper	The different compound			
filter pape	Thu are		in a sample dissolved to			
suspensio	evaporating basin		different extents in the solvent.			
solid resid	. Bolling water	starting	our one.			
filter funn	al gauze	positions of the samples				
/ filtrate		and dumpiod	More soluble compound			

cooling

solution

Triple Science - Chemistry

				CP7 – Chromatograg results thermoi	The ink separates into multiple different spots. The one that moves furthest is most soluble in the water. meter delivery tube	
Distillation Condenser	5. Distillation A method used to collect pure liquid from a solution, such as getting pure water from seawater. A glass tube surrounded by a glass	6. Core pract CP7 – Aim CP7 – Distillation set	ical – investigating inks (CP7) To separate inks using distillation and chromatography. Place some ink in a conical flask with a side arm and delivery	anti-bumping granules ink heat ice water		
How distillation works	jacket containing cold tap water. Used to condense gases back to liquids. The solution is heated until it is hot enough for the solvent to boil. The solvent is then passed	up	tube attached, place the flask on a tripod above a Bunsen burner. Place a boiling tube in a beaker of ice and place the delivery tube into the boiling tube.	F water Desalination	B a simple still Producing pure water from seawater.	
	through a cool condenser where it turns back to liquid. The solute does not get hot enough to evaporate and stays where it is.	CP7 – Run the distillation CP7 –	Light the Bunsen burner and allow the ink to boil, stop once a few drops of liquid have collected. Pure water collects in the test	Purifying seawater Uses of pure	The seawater is distilled: heating the water to produce water vapour and condensing it back to liquid. Uses lots of energy. Pure water has to be used when	
Anti-bumping granules Fractional distillation	Jagged grains of glass that are added during distillation to prevent violent boiling. A type of distillation used to separate mixtures of two or more	Distillation results	tube because it boils and the cold ice condenses the vapours back to liquid. The ink gets darker because there is less	water	chemists analyse substances to find out what they contain. Tap water contains many dissolved substances that could interfere with this.	
How fractional distillation works	liquids.	CP7 – Chromatography setup	water to dilute it. 1. Draw pencil line on paper 2. Place ink spot on line 3. Place paper in solvent, with solvent below pencil line.	treatment in the UK	Water is passed through a sedimentation tank, to allow sediment to settle out, it is passed through a filtration tower to remove floating particles, chlorine is added to kill bacteria.	
Fractionating column	A tall glass column used during fractional distillation that gives a better separation of the liquids by producing a temperature gradient.	CP7 –	 4. Allow solvent to soak up the paper 5. Stop when solvent near top, and mark how far it gets. Measure how far each of your spots has moved from the line 	from water source sedimer tan	filtration tower drinking water stored in tower chlorine added	
anti-bumping	- thermometer	- calculate Rf	and how far the solvent has moved. Rf = spot distance / sample distance.		gravel water for homes and	
granules o make the liquid bil more smoothly small bubbles of apour form on the corners of the anules and reduce e risk of the liquid boiling over.)	cooling water out condenser (a central tube surrounded by a jacket of cold water) flask				Lindustry	