SB3: Genetics (Paper 1)

Lesson	Objectives Tracker Sheet	Date covered	l know this well	l need to do more work on this
SB3a Sexual and asexual reproduction	 B3.1 Explain some of the advantages and disadvantages of asexual reproduction, including the lack of need to find a mate, a rapid reproductive cycle, but no variation in the population. B3.2 Explain some of the advantages and disadvantages of sexual reproduction, including variation in the population but 			
SB3b Meiosis	the requirement to find a mate. B3.3 Explain the role of meiotic cell division, including the production of four daughter cells, each with half the number of chromosomes, and that this results in the formation of genetically different haploid gametes. The stages of meiosis are not required. B3.5 Describe the genome as the entire DNA of an organism and a gene as a section of a DNA molecule that codes for a			
SB3ci DNA	B3.4 Describe DNA as a polymer made up of: (a) two strands coiled to form a double helix (b) strands linked by a series of complementary base pairs joined together by weak hydrogen bonds.			
SB3cii DNA extraction	B3.6 Investigate how to extract DNA from fruit			
SB3d Protein synthesis	 H B3.7 Explain how the order of bases in a section of DNA decides the order of amino acids in the protein and that these fold to produce specifically shaped proteins such as enzymes. H B3.8 Describe the stages of protein synthesis, including transcription and translation: a RNA polymerase binds to noncoding DNA located in front of a gene b RNA polymerase produces a complementary. 			
	mRNA strand from the coding			

	DNA of the gene c the		
	attachment of the mRNA to the		
	ribosome d the coding by triplets		
	of bases (codons) in the mRNA		
	for specific amino acids e the		
	transfer of amino acids to the		
	ribosome by tRNA f the linking		
	of amino acids to form		
	polypeptides.		
	H B3.9 Describe how genetic		
	variants in the non-coding DNA		
	of a gene can affect phenotype		
	by influencing the binding of		
	RNA polymerase and altering		
SB3e Genetic	the quantity of protein produced.		
variants and	H B3.10 Describe how genetic		
pnenotypes	variants in the coding DNA of a		
	gene can affect phenotype by		
	altering the sequence of amino		
	acids and therefore the activity		
	of the protein produced.		
	B3.11 Describe the work of		
	Mendel in discovering the basis		
CD2f Mandal	of genetics and recognise the		
SB3I Wendel	difficulties of understanding		
	inheritance before the		
	mechanism was discovered.		
	B3.12 Explain why these are		
	differences in the inherited		
	characteristics as a result of		
	alleles.		
	B3.13 Explain the terms:		
	dominant, recessive,		
SDSY Alleles	homozygous, heterozygous,		
	genotype, phenotype and		
	zygote.		
	B3.14 Explain monohybrid		
	inheritance using genetic		
	diagrams.		
	B3.14 Explain monohybrid		
	inheritance using Punnett		
	squares and family pedigrees.		
	B3.15 Describe how the sex of		
	offspring is determined at		
	fertilisation, using genetic		
SB3h Inheritance	diagrams.		
	B3.16 Calculate and analyse		
	outcomes (using probabilities,		
	ratios and percentages) from		
	monohybrid crosses and		
	pedigree analysis or dominant		
	and recessive traits.		

SB3i Multiple and missing alleles	B3.17 Describe the inheritance of the ABO blood groups with reference to codominance and multiple alleles.		
	H B3.18 Explain how sex-linked genetic disorders are inherited.		
SB3j Gene mutation	B3.19 State that mostphenotypic features are theresult of multiple genes ratherthan single gene inheritance.B3.20 Describe the causes of		
	variation that influence phenotype including: (a) genetic variation – different characteristics as a result of mutation and sexual reproduction.		
	B3.21 Discuss the outcomes of the Human Genome Project and its potential applications within medicine.		
	B3.22 State that there is usually extensive genetic variation within a population of a species and that these arise through mutations		
	B3.23 State that most genetic mutations have no effect on the phenotype, some mutations have a small effect on the phenotype and, rarely, a single mutation will significantly affect the phenotype.		
SB3k Variation	B3.20 Describe the causes of variation that influence phenotype including: (a) genetic variation – different characteristics as a result of mutation and sexual		
	reproduction (b) environmental variation – different characteristics caused by an organism's environment (acquired characteristics)		