

Combined Science - Physics

CP9 Knowledge organiser

1					.	
	*Voltmeter	Used for measuring potential	- ·	Higher resistance \rightarrow better	**Resistor	Current increases in direct
		difference. Connected in parallel.	resistance	insulator	graph	proportion to voltage (straight line
e	**Current in			Lower resistance →better		going through (0,0)).
	series circuit			conductor	**Filament	Current increases as voltage
difference	**Current in			g Current = potential diff / resistance	lamp graph	increases, but levels out
	parallel	battery. Current on branches	current	I = V / R		eventually.
nergy	circuits	adds up to that at the battery.			**Diode	Graph slopes up with a positive
d potential	**Potential	Potential difference is shared		Current = amps, A	graph	voltage but stays at 0 with a
	difference in			Potential diff = volts, V		negative voltage.
	series circuit	s circuit. It adds up to be the same		Resistance = ohms, Ω	2 mm	
		as the battery.			Gurrent	Current (A)
	**Potential	The same across each branch as		Note: This equation is normally		
gating	difference in	it is across the battery.		written as V = IR.		→ Voltage Potential
	parallel		**Changing	Higher voltage $ ightarrow$ higher current	Ī	
	circuits		current	Higher resistance $ ightarrow$ lower current		
		······································		E Desisters		
		Current, charge and energy	**Dealate	5. Resistors	7. Core pra	actical – investigating resistance
		The amount electricity that has	Resistors	Circuit components with differing		(CP15)
		flowed through a circuit.		resistance to control how much	*CP15 - Aim	To explore how resistance changes
ite		The unit of measurement for	***	current flows to parts of a circuit.		in different circuits.
its	C	charge.		Total resistance is the sum of each of	*CP15 -	Set up a circuit with an ammeter,
re free to move		The number of coulombs of charge	in series	the resistors.		resistor and voltmeter across the
different atoms.		that flows past a point each second.	**Voltage	Voltage is shared in proportion to	resistance	resistor. Vary the voltage and
itive charge from		Charge = current x time	and	the resistance. The resistor with		record voltage and current.
minal towards	charge	Q = I x t		more resistances takes more of the	*CP15 -	Set up a series circuit with an
minal (goes in			series	voltage. Calculate this using V=IR.		
ection to		Charge = coulombs		Think about each branch of the	series	voltmeters across each bulb and
		Current = amps	in parallel	circuit as a different series circuit.	circuits	the power supply. Vary the
rom the negative		Time = seconds		Resistors on different branches do	circuits	voltage and record all readings
ds the positive		The amount of energy transferred		not affect each other.	*CP15 -	Set up a parallel circuit with two
		by each coulomb of charge. One		Resistors where you can change the		bulbs and ammeters on each
h there is only		volt = 1 joule per coulomb.	resistors	resistance to adjust the current.	parallel	branch and by the power supply,
e current to flow.	*Calculating	Energy = charge x potential		6. Controlling resistance	circuits	and voltmeters across each bulb
ultiple paths for	energy	difference	**LDR	Light-dependent resistor. High	circuits	and the powers supply. Vary
ow.		E = Q x V		resistance in dark, low resistance		voltage, record all readings.
lifference				in light.	*CP15 -	Resistor – doubling voltage
urement for		Energy = joules	*****		Results	doubles current
		Charge = coulombs	rinermist	or High resistance when cold, low	nesuits	
r short.		Potential difference = volts	** 0'! -	resistance when hot.		Sorios circuit – voltago at hulha
ng current.			**Diode	High resistance in one direction,		Series circuit – voltage at bulbs
ies.		resistance and potential difference	**=**	low resistance in the other.		half of that at power supply
is what pushes		The difficulty with which current	**Filament	0		Devellel circuit veltage at hults
a circuit.		passes through materials.	lamp	filament to heat up, producing		Parallel circuit – voltage at bulbs
urement for	,	The unit of measurement for		light.		equal to power supply, current
nce.		resistance.				half that at power supply

P9: Electricity

Lesson sequence

- 1. Electrical circuits
- 2. Current and potential difference
- 3. Current, charge and energy
- 4. Current, resistance and potential difference
- 5. Resistors
- 6. Controlling resistance
- 7. Core practical investigating resistance (CP15)
- 8. Energy transfers
- 9. Electrical power
- 10. Using electricity
- 11. Electrical safety

1. Electrical circuits		
**Delocalised	Electrons that are free to move	
electrons	between many different atoms.	
**Conventional	The flow of positive charge from	
current	the positive terminal towards	
	the negative terminal (goes in	
	the opposite direction to	
	electrons).	
**Electron flow	Electrons flow from the negative	
	terminal towards the positive	
	terminal.	
*Series circuit	A circuit in which there is only	
	one path for the current to flow.	
*Parallel circuit	A circuit with multiple paths for	
	the current to flow.	

2. Current and potential difference		
*Amperes, A	The unit of measurement for	
	current. Amps for short.	
*Ammeter Used for measuring current.		
	Connected in series.	
*Potential	Aka voltage. This is what pushes	
difference	electrons around a circuit.	
*Volts, V	The unit of measurement for	
	potential difference.	

Combined Science - Physics

	8. Energy transfer		
<pre>**Calculating Energy = current x potential</pre>			
energy	difference x time		
transfer	$E = I \times V \times t$		
	Energy = joules		
	Current = amps		
	Potential difference = volts		
	Time = seconds		
**Resistan	ce Electrons flowing through wires		
and energy	collide with atoms and lose		
transfer	energy. This energy is transferred		
	to heat.		
**Electrica			
energy	transferred to wasted heat energy		
dissipation			
**Reducing	g Use thicker wires, use shorter		
resistance	wires, use lower-resistance metals,		
reduce the temperature.			
	9. Electrical power		
Power	The rate of energy transfer.		
*Watts, W	The unit of power: $1 \text{ W} = 1$ joule per		
	second		
*Power	$P = \frac{E}{t}$		
and work			
done	Where 'P' is power in W, 'E' is work		
	done in J, 't' is time in s.		
*Power,	$P = I \times V$		
current	Where 'P' is the power in W, 'l' is the		
and	current in A, V is the potential		
voltage	difference in V.		
**Power,	$P = I^2 \times R$		
current	Where 'P' is the power in W, 'l' is the		
	current in A, 'R' is the resistance in		
and resistance	current in A, 'R' is the resistance in		

10. Using electricity		
*Mains The electricity supplied from wall		
electricity sockets.		
*National The systems of power lines an		
grid	sub-stations that distributes	
	electricity from power stations to	
	homes and businesses.	

*Heaters	Transfer energy from electrical to	
	thermal.	
*Motors	Transfer energy from electrical to	
	kinetic.	
**Direct	Current that flows in one	
current	direction.	
**Alternating	Current that switches direction	
current	many times each second.	
**Frequency	Mains current alternates (switches	
of mains	direction) 50 times each second.	
current	The frequency is 50 Hz.	

11. Electrical safety			
*Live wire	Brown, 230 V, connects the		
	appliance to the power station.		
*Neutral wire	Blue, 0 V, completes the circuit.		
*Earth wire	Green and yellow, 0 V. Connects		
	the appliance to the ground so		
	current can flow there in the		
	event of a short circuit.		
*Fuse	A thin metal wire that melts and		
	breaks the circuit if there is too		
	much current.		
**Circuit	Breaks the circuit if too much		
breaker	current flows.		
**Advantages	Quicker than fuses, just need		
of circuit	switching rather than replacing.		
breakers			

Circuit symbols		
*Switch		
*Cell	+ - 	
**Battery	B B	
ʿLamp	-	
Ammeter		
Voltmeter		
Resistor		
**Variable resistor		

**Diode	
**LDR	
**Thermistor	