P9: Electricity

Lesson sequence

1. Electrical circuits
2. Current and potential difference
3. Current, charge and energy
4. Current, resistance and potential difference
5. Resistors
6. Controlling resistance
7. Core practical - investigating resistance (CP15)
8. Energy transfers
9. Electrical power
10. Using electricity
11. Electrical safety

1. Electrical circuits	
**Delocalised electrons	Electrons that are free to move between many different atoms.
** Conventional current	lhe flow of positive charge from the positive terminal towards the negative terminal (goes in the opposite direction to electrons).
**Electron flow	Electrons flow from the negative terminal towards the positive terminal.
*Series circuit	A circuit in which there is only one path for the current to flow.
*Parallel circuit	A circuit with multiple paths for the current to flow.

2. Current and potential difference	
*Amperes, A	The unit of measurement for current. Amps for short.
*Ammeter	Used for measuring current. Connected in series.
*Potential difference	Aka voltage. This is what pushes electrons around a circuit.
*Volts, V	The unit of measurement for potential difference.

*Voltmeter	Used for measuring potential difference. Connected in parallel.
**Current in series circuits	The same at all points in the circuit.
**Current in parallel circuits	Less on the branches than at the battery. Current on branches adds up to that at the battery.
d*Potential difference in series circuits	Potential difference is shared between the components on a circuit. It adds up to be the same as the battery.
**Potential difference in parallel circuits	The same across each branch as it is across the battery.

3. Current, charge and energy	
*Charge	The amount electricity that has flowed through a circuit.
*Coulombs, C	The unit of measurement for charge.
*Current	The number of coulombs of charge that flows past a point each second.
*Calculating charge	Charge = current x time $\mathrm{Q}=1 \mathrm{xt}$ Charge = coulombs Current $=$ amps Time = seconds
8*The meaning of volts	The amount of energy transferred by each coulomb of charge. One volt = 1 joule per coulomb.
*Calculating energy	Energy = charge x potential difference $E=Q \times V$ Energy = joules Charge = coulombs Potential difference = volts

[^0]\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}* * \text { High/low } \\
\text { resistance }\end{array} & \begin{array}{l}\text { Higher resistance } \rightarrow \text { better } \\
\text { insulator } \\
\text { Lower resistance } \rightarrow \text { better } \\
\text { conductor }\end{array} \\
\hline \begin{array}{l}\text { *Calculating } \\
\text { current }\end{array} & \begin{array}{l}\text { Current = potential diff / resistance } \\
\mathrm{I}=\mathrm{V} / \mathrm{R}\end{array}
$$

Current = amps, A

Potential diff = volts, V

Resistance = ohms, \Omega\end{array}\right]\)| Note: This equation is normally |
| :--- |
| written as V = IR. |

5. Resistors

5. Resistors	
**Resistors	Circuit components with differing resistance to control how much current flows to parts of a circuit.
**Resistors in series	Total resistance is the sum of each of the resistors.
**Voltage and resistors in series	Voltage is shared in proportion to the resistance. The resistor with more resistances takes more of the voltage. Calculate this using V=IR.
**Resistors in parallel	Think about each branch of the circuit as a different series circuit. Resistors on different branches do not affect each other.
**Variable resistors	Resistors where you can change the resistance to adjust the current.

6. Controlling resistance	
**LDR	Light-dependent resistor. High resistance in dark, low resistance in light.
**Thermistor	High resistance when cold, low resistance when hot.
**Diode	High resistance in one direction, low resistance in the other.
**Filament lamp	High resistance causes the filament to heat up, producing light.

$* * R e s i s t o r ~$ graph	Current increases in direct proportion to voltage (straight line going through (0,0)).
$* *$ Filament lamp graph	Current increases as voltage increases, but levels out eventually.
**Diode graph	Graph slopes up with a positive voltage but stays at 0 with a negative voltage.

7. Core practical - investigating resistance (CP15)	
*CP15-Aim	To explore how resistance changes in different circuits.
*CP15 Investigating resistance	Set up a circuit with an ammeter, resistor and voltmeter across the resistor. Vary the voltage and record voltage and current.
*CP15 - Investigating series circuits	Set up a series circuit with an ammeter, two bulbs and voltmeters across each bulb and the power supply. Vary the voltage and record all readings
*CP15 - Investigating parallel circuits	Set up a parallel circuit with two bulbs and ammeters on each branch and by the power supply, and voltmeters across each bulb and the powers supply. Vary voltage, record all readings.
*CP15 - Results	Resistor - doubling voltage doubles current Series circuit - voltage at bulbs half of that at power supply Parallel circuit - voltage at bulbs equal to power supply, current half that at power supply

8. Energy transfer	
** Calculating energy transfer	Energy = current x potential difference x time $\mathrm{E}=\mathrm{I} \times \mathrm{V} \times \mathrm{t}$
Energy = joules	
Current = amps	
Potential difference = volts	
Time = seconds	

9. Electrical power	
Power	The rate of energy transfer.
*Watts, W	The unit of power: $1 \mathrm{~W}=1$ joule per second
*Power and work done	Where ' P ' is power in $\mathrm{W}, ~ ' ~$ d' ' is work done in J, ' t ' is time in s.
*Power, current and voltage	Where ' P ' is the power in $\mathrm{W}, ~ ' I ' ~ i s ~ t h e ~$
current in A, V is the potential	
difference in V .	

	10. Using electricity
*Mains electricity	The electricity supplied from wall sockets.
*National grid	The systems of power lines and sub-stations that distributes electricity from power stations to homes and businesses.

*Heaters	Transfer energy from electrical to thermal.	**Diode	
*Motors	Transfer energy from electrical to kinetic.	**LDR	
**Direct current	Current that flows in one direction.	**Thermistor	
**Alternating current	Current that switches direction many times each second.		

[^0]: 4. Current, resistance and potential difference *Resistance \mid The difficulty with which current passes through materials.
 *Ohms, Ω The unit of measurement for resistance.
