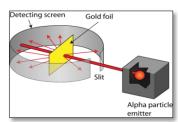
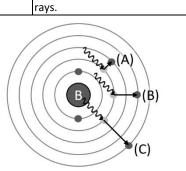


Combined Science - Physics

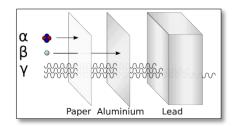

CP6 Knowledge organiser

P6: Radioactivity

Lesson sequence


- 1. Atomic structure
- 2. Subatomic particles
- 3. Electron orbits
- 4. Radiation from unstable atoms
- 5. Nuclear reactions
- 6. Half-life
- 7. Background radiation
- 8. Dangers of radioactivity

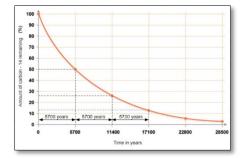
	1. Atomic structure
*Atom	Smallest stable particle of
	matter.
**Size of	2.5 x10 ⁻¹⁰ m in diameter
atoms	
*Element	Pure substance made of a single
	type of atom.
*John	Pictured atoms as tiny hard
Dalton	round balls, with different
	elements having atoms of
	different sizes.
*J.J Thomson	Discovered negative particles
	smaller than atoms called
	electrons.
**Plum-	Atoms as a sphere of positively
pudding	charged matter with negative
model	electrons scattered throughout
	it.
**Rutherford's	Fired alpha particles at very thin
experiment	gold leaf and used a special
	screen to record where they
	went.
**Rutherford's	Most alpha particles went
results	straight through, some scattered
	(changed path).
**Rutherford's	Scattered particles hit a nucleus.
explanation	Nucleus must be small because
	most went straight through
	without hitting it.



2	2. Subatomic particles	
*Subatomic	Particles smaller than atoms:	
particle	protons, neutrons and electrons.	
*Protons	+1 charge, mass = 1, located in the	
	nucleus	
*Neutrons	0 charge, mass = 1, located in the	
	nucleus	
*Electrons	-1 charge, mass = 1/1835, located	
	around nucleus in shells	
**Relative	Not the actual mass because no	
mass	units. Protons and neutrons have	
	same relative mass: their mass is	
	1.	
*Nucleons	Subatomic particles found in the	
	nucleus: protons and neutrons.	
*Determining	The number of protons	
the element	determines which element an	
	atom is.	
*Atomic	The number of protons in an	
number	atom.	
	Also electrons.	
*Mass	The number of nucleons (protons	
number	and neutrons) in an atom.	
*Number of	Mass number – atomic number	
neutrons		
**lsotopes	Versions of an element with the	
	same number of protons, but	
	different number of neutrons.	
**Naming	Name followed by mass, e.g.	
isotopes	carbon-13, or symbol preceded by	
	mass, e.g. ¹³ C.	

3. Electron orbits		
**Orbits	The shells of electrons around an	
	atom.	
**Orbits and	Higher orbit = higher energy	
energy		
**Excited	When an electron has absorbed	
electrons	energy and jumped to a higher	
	orbit.	
***How to	- When atoms absorb light	
excite	 When electricity is passed 	
electrons	through gases	
	 Strongly heating a material 	
***Emitting	Electrons emit light when they	
light	drop back down an orbit. A	
	bigger drop down releases higher	
	energy light.	
***Absorbing	Light absorbed at specific	
light	wavelengths corresponds to	
	energy gap in orbits: jumping up	
	one orbit = redder light, jumping	
	up several orbits = bluer light.	
***Emission	Pattern of bands of light at	
spectrum	specific wavelengths caused by	
	exciting a gaseous element with	
	electricity.	
***Absorption		
spectrum	'rainbow' spectrum caused by a	
	gaseous element absorbing some	
	of the light passed through it.	
***Forming	When an electron is given so	
ions	much energy it leaves the atom	
	entirely creating a positive ion.	
**Ionising	Radiation that causes ionisation:	
radiation	(high energy) UV, x-rays, gamma	
1	ravic	

4. Rac	4. Radiation from unstable atoms	
*Unstable	An atom whose nucleus contains	
atom	too much energy becomes	
	unstable.	
*Decay	When an unstable atom releases its	
	excess energy by changing.	
	Releases ionising radiation.	
*Alpha	Made of alpha particles: two	
radiation	protons and two neutrons. Symbol:	
	α or ${}_{2}^{4}He$.	
*Beta-minus	Made of beta particles: a fast-	
radiation	moving electron. Symbol: β^{-} or $_{-1}^{0}e$.	
*Beta-plus	Made of positrons: particles with	
radiation	same mass as electrons but a	
	positive charge. Symbol: β^+ or 0_1e .	
*Gamma	Extremely short wavelength / high	
radiation	frequency / high energy	
	electromagnetic radiation. Symbol:	
	γ.	
*Neutron	Fast-moving neutrons. Symbol: n.	
radiation		
*Ionising	From most to least is alpha, beta	
power	gamma.	
*Penetrating	From most to least is gamma, beta,	
power	alpha.	
**Ionising vs	When the radiation ionises an	
penetrating	atom it loses some of its energy.	
power	Alpha ionises particles most easily	
	so loses it energy most quickly, and	
	vice versa for gamma.	



Combined Science - Physics

CP6 Knowledge organiser

5. Nuclear reactions		
**Alpha	Atomic number decreases by two,	
decay	mass number decreases by four.	
**Beta-	Atomic number increases by one,	
decay	mass number stays the same.	
**Beta+	Atomic number decreases by one,	
decay	mass number stays the same.	
**Gamma	Atomic number and mass number	
decay	unchanged.	
**Neutron	Atomic number stays the same, mass	
decay	number decreases by one.	
***Writing	 Write in what you know 	
nuclear	 Balance the mass and atomic 	
equations	number	
	 Work out the symbols to match 	
	the numbers	

6. Half-life		
*Half-life	The time taken for half of the	
	undecayed atoms in a sample to	
	decay. Stays constant for each	
	isotope.	
*Half-life and	Less stable $ ightarrow$ shorter half-life	
stability	More stable $ ightarrow$ longer half-life	
*Half-life and	Shorter half-life $ ightarrow$ more active	
radioactivity	Longer half-life → less active	
*Becquerels,	The unit of radioactivity: 1 Bq =	
Bq	one decay per second.	
**Half-life	x-axis = time, y-axis =	
graph	radioactivity. The line curves	
	downwards but never touches	
	the x-axis.	

	-	
	g Pick two points on the y-axis, one	
half-life from	a half of the other, trace along to	
graph	the line and down to the time.	
	Half-life is the difference in the	
	time.	
**Calculation	s - Divide time by half-life to	
with half-life	give a number of half-lives	
	- Forwards in time: halvings	
	- Back in time: doublings	
7. Background radiation		
•	Low levels of ionising radiation that	
radiation	we are constantly exposed to.	
*Radon gas	The biggest source of background	
	radiation: a radioactive gas	
	produced by some rocks in the	
	ground	
*Other	Food, hospitals, nuclear power	
sources	industry, space (cosmic rays)	
*Artificial	15%: 14% hospitals, 1% nuclear	
sources	industry	
**Geiger-	Used to measure radioactivity,	
Müller (GM)	produce a click each time radiation	
tube	passes through it.	
**Count-	The number of time a GM tube	
rate	detects radiation each second.	
**Measuring		
background	readings and then calculate the	
radiation	average (mean).	
**Measuring	-	
the activity	background radiation.	
of a source		
*Dosimeter	A badge that changes colour in	
	response to radiation exposure.	
*Dose	The amount of radiation received.	

8. Dangers of radioactivity	
*Mutations	DNA damage caused by
	ionising radiation, can lead to
	cancer.
**Repairing	Cells contain proteins that can
damage	repair DNA damage as long as
	the radiation dose is low
	enough.
**Minimising	- Wear protective clothing
radiation risk	 Handle with tongs
	 Don't point at people
	- Limit time
	 Use protective shielding
	 Wear dosimeter badges
**Nuclear power	There is a small chance of
risks	accidents causing radioactive
	sources to escape
**Irradiation	Exposure to radiation, stops
	when the source of radiation is
	removed.
**Contamination	When particles of radioactive
	substances are on or in the
	body.
**Risks in	Using radioactivity carries
perspective	serious risks, but so do many
	other things, so it is safe to use
	as long as it is treated with
	caution.