

Combined Science - Physics

CP3 Knowledge organiser

Heat energy 90 J

P3: Energy Lesson sequence

- 1. Storing and transferring energy
- 2. Energy efficiency
- 3. Insulation
- 4. Stored energy
- 5. Non-renewable energy resources
- 6. Renewable energy resources

1. Storing and transferring energy			
*Energy	The capacity to do work.		
*Joules	The units of energy, symbol = J.		
*Kilojoules	1000 J, symbol = kJ.		
*Thermal	Energy stored on hot objects.		
energy			
*Kinetic energy	Energy stored in moving		
	objects.		
*Chemical	Energy stored in chemicals		
energy	such as fuels.		
*Nuclear energy	Aka atomic energy. Energy		
	stored in the nucleus of atoms.		
**Gravitational	Energy stored in objects based		
potential energy	on how high they are.		
**Elastic	Aka strain energy. Energy		
potential energy	stored in bent or stretched		
	objects.		
**Other forms	ms Light, sound, electrical.		
of energy			
**First law of	Energy cannot be created or		
thermodynamics	destroyed, just transferred		
	from one form to another.		
**Energy	Say what form the energy		
transfers	starts as and what it becomes.		
**Sankey	Shows energy transfers. The		
diagram	thickness of the arrow relates		
	to the amount of energy.		

2. Energy efficiency					
**Dissipation The way energy spreads out,					
Dissipation	becoming less useful as it does.				
*Wasted	Energy that is transferred into				
	forms that can't be used.				
energy *Friction	Causes energy loss as heat when				
metion	two surfaces rub together.				
**Lubricatior					
Lubrication					
** 5 1 + +	reduces energy loss from friction.				
**Electrical	Causes wires to heat up, wasting				
resistance	electrical energy.				
*Calculating	Efficiency				
efficiency	$= \frac{useful energy transferred}{useful energy transferred}$				
de de	total energy transferred				
**Energy	Efficiency is between 0 and 1. 1 =				
efficiency	no energy wasted, 0 = all energy				
numbers	wasted.				
3. Insulation					
*Convection Heat transfer caused when hot					
convection	fluids (gas or liquid) rise because				
	they are less dense.				
*Conduction	Heat transfer through solids				
conduction					
	caused by vibrating particles				
*Radiation	bumping into each other.				
Radiation	Heat transfer by infrared radiation				
	which heats objects up when they				
*** • •	absorb it.				
**Insulation	Materials that contain lots of tiny				
	air pockets that prevent heat loss				
**	by conduction.				
**Thermal	A measure of how well a material				
conductivity	conducts heat.				
**Draught-	Sealing gaps around doors and				
proofing	windows to prevent heat loss by				
convection.					
4. Stored energy					
*Calculating					
kinetic energ	$KE = \frac{1}{2}mv^2$				
encie cherg	Where 'KE' is kinetic energy in J,				
	'm' is mass in kg, 'v' is velocity in				
m/s.					
,					

**Calculating	g v $2KE$	*Solar power	Solar cells turn sunlight to
from KE	v =		electricity.
	\sqrt{m}		
**Gravitational The strength of gravity. Differer			😕 No sun no power, need
field strengtl	n on different planets. On earth:		lots of space, not suitable for
	10 N/kg.		all countries
**Calculating	5	**Tidal power	Uses water movement from
gravitational	_		tides to spin turbines
potential	potential energy in J, 'm' is mass	**Tidal barrage	A damn built across an
energy	in kg, 'g' is gravitational field		estuary that fills up when tide
	strength in N/kg, 'h' is height		goes in.
change in m.			Buge amounts of energy,
5. Non-renewable energy resources		1	no CO ₂
	Coal, oil, natural gas. All are non-	1 1	Bestroys important
	renewable.		mudflat habitats
*Non-	A resource that will one day run out	**Hydroelectricity	A damn is built across a river
renewable	because it is being used faster than		valley, water released from
resource	it is being made.		the damn spins turbines.
**Harm	Carbon dioxide gas is released		⊖Lots of energy, no CO₂
from	which causes global warming. Sulfur		Bestroys habitat by
burning	dioxide is released which causes		flooding
fossil fuels	acid rain.	*Biofuels	Fuels made from recently
*Renewable	A resource will not run out.		plant or animal matter, often
resource			waste.
*Nuclear	Electricity generated from nuclear		🕲 Carbon neutral
power	fuels such as uranium.		Needs a lot of land,
**Nuclear	😊 Lasts a long time, releases no		increases food prices
power pros	carbon dioxide	**Carbon neutral	When burning a fuel releases
and cons	😕 Produces very harmful waste,		the same CO_2 it absorbed
	expensive to decommission,		when it was growing, so there
	although rare, accidents are very		is no CO ₂ increase.
dangerous.			
		1	Light
6. Renewable energy resources		-	energy 10 J
*Wind powe		Electrical	
	wind.	energy 100	J
Lots needed, ugly?, no			
wind no power			