P2: Forces and motion

Lesson sequence

1. Resultant forces
2. Newton's first law
3. Mass and weight
4. Newton's second law
5. Core practical - investigating acceleration (CP12)
6. Newton's third law
7. Momentum (HT)
8. Stopping distances
9. Car safety

1. Resultant forces	
*Scalar quantity	A quantity with magnitude (but no direction).
*Vector quantity	A quantity with magnitude and direction.
*Force arrows	Arrows can be used to represent forces: - Direction = direction of force - Length = size of force
**Resultant force	The force left over when forces acting in opposite directions are cancelled out.
**Calculating resultant force	Subtract the total force in one direction from the total force in the other direction.
*Balanced	When the resultant force is zero (because forces acting in opposite directions are the same size).
*Unbalanced forces	When the resultant force is non- zero (because there is more force in one direction than another).
*Newton's first law of motion	2. Newton's first law An object will move at the same speed and direction unless it experiences a resultant force.

$* *$ The effect of resultant forces	Resultant forces cause acceleration: speeding up, slowing down or changing direction
$* *$ Effect of forces on motion	Forces make you start moving, stop moving or change direction, they are not needed to keep you moving!
$* * *$ Circular motion	Moving in a circle is a type of acceleration because you are changing velocity (your direction changes even if your speed does not).

***Centripetal A force acting towards the centre force \quad of a circle that enables objects to move in a circle.
***Sources of Gravity - keeps the Earth orbiting centripetal

| force | Tension - lets a bucket swing in |
| :--- | :--- | circles on a rope Friction - keeps cars turn round a roundabout

*Force meter	An instrument for measuring forces. They usually involve a spring that stretched more the more the force.
**Gravitational field strength	The strength of gravity, which is different on different planets. Units = newtons per g=kilogram, N / kg.
**Gravitational field strength on Earth	$10 \mathrm{~N} / \mathrm{kg}$
**Calculating weight	Weight = mass \times gravitational field strength $W=m \times g$ Weight $=\mathrm{N}$ Mass = kg Gravitational field strength $=$ N/kg
**Air resistance	A force greater by the air pushing against you as you move. Faster movement \rightarrow greater air resistance.
***Motion whilst falling	Accelerate until the air resistance is equal to the weight; now there is no resultant force so speed stays constant.

4. Newton's second law	
*Newton's second law of motion	Force = mass \times acceleration
**Acceleration is greater when...	- The force is greater - The mass is smaller
*Calculating forces	```Force \(=\) mass \(x\) acceleration \(\mathrm{F}=\mathrm{m} \times \mathrm{a}\) Force \(=\mathrm{N}\) Mass \(=\mathrm{kg}\) Acceleration \(=\mathrm{m} / \mathrm{s}^{2}\)```

$*$ Calculating acceleration	Acceleration $=$ mass $/$ force $a=\mathrm{F} / \mathrm{m}$ Force $=\mathrm{N}$ Mass $=\mathrm{kg}$ Acceleration $=\mathrm{m} / \mathrm{s}^{2}$
$* * *$ Inertial mass	The mass calculated by measuring the acceleration produced by force, using the equation ' $\mathrm{m}=\mathrm{F} /$ a^{\prime}
$* * *$ The point of inertial mass	Inertial mass is the same as mass measured with a mass balance, but it gives us a way to measure mass where there is no gravity, such as in space.

5. Core practical - investigating acceleration (CP12)	
*CP12-Aim	To investigate how changing force changes acceleration.
$\begin{aligned} & \text { *CP12- } \\ & \text { Setup } \end{aligned}$	A trolley on a ramp with 90 g masses. 10 g mass hanger attached to trolley via a string over a pulley.
$\begin{array}{\|l} \hline \text { *CP12 - } \\ \text { Data } \\ \text { collection } \\ \hline \end{array}$	Release the trolley, use light gates to measure the acceleration.
*CP12 - Variations	Move 10 g of mass from the trolley to the mass hanger each time.
*CP12 Independent variable	The force: each 10 g mass $=0.1 \mathrm{~N}$ force
*CP12 - Results	Ore mass \rightarrow more force \rightarrow greater acceleration.
	6. Newton's third law
*Newton's third law	For every action force there is an equal but opposite reaction force.
*Action force	The force you push or pull with.
*Reaction force	A force of the same size but opposite direction to an action force.
*Action- reaction forces If	If, A applies an action force to B, B applies a reaction force of same size and opposite direction to A.

**Actionreaction vs balanced	Similarities: same sizes, opposite directions		**Thinking distance and reaction time	Slower reactions = greater thinking distance
forces	Differences: balanced forces act on same object, action-reaction act on different objects		**Thinking distance	Higher speed, tiredness, illness, drugs, distractions, old age
***Actionreaction forces collisions	E.g. kicking a ball: the foot pushes the ball, the ball pushes back on the foot.		increased by...	
			**Braking distance	Higher speed, poor brakes, poor tyres, wet/icy/gravelly road,
7. Momentum (HT)				
*Momentum		The tendency of an object to	9. Crash hazards	
		keep moving.	**Crash danger	Crashes involve large decelerations, creating large forces which can injure you.
*Calculating momentum		Momentum = mass x velocity field strength		
		$p=m \times v$	**Car safety features	Increase the time a collision takes, reducing deceleration and forces.
		$\begin{aligned} & \text { Momentum = kg m/s } \\ & \text { Mass = kg } \\ & \text { velocity }=\mathrm{N} / \mathrm{kg} \end{aligned}$	**Three car safety features	Crumple zones, (stretchy) seat belts, air bags
Momentum and force calculations		```Force = change in momentum / time```	***Collision forces	Greater momentum change \rightarrow greater force
		$F=(m v-m u) / t$	**Calculating collision forces	Force = change in momentum / time $F=(m v-m u) / t$
		Fo		
		Mass = kg		Force $=\mathrm{N}$
		Velocity $=\mathrm{m} / \mathrm{s}$		Mass $=\mathrm{kg}$
		Time = s		Velocity $=\mathrm{m} / \mathrm{s}$
***Conservation		Total momentum before and		Time $=\mathrm{s}$

8. Stopping distances	
*Stopping distance	The distance travelled from when a hazard is seen to when you fully stop.
*Thinking distance	The distance travelled from when a hazard is seen to when you brake.
*Braking distance	The distance travelled from when you brake to when you fully stop.
**Calculating stopping distance	Stopping distance = thinking distance + braking distance

