CHURCH STRETTON SCHOOL			Combined	Science	CP12/13 Knowledge			
P12-13	B: Particle model, forces and matter	*Density and state *Density calculations	Solid > liquid > gas, due to particles being closer together. Density = mass / volume p = m / v	**Temperature vs thermal energy	A very small hot object has less thermal energy than a very large cold object, because thermal energy is the energy of all the particles added up	**State cha calculations	nge Thermal energy = mass x specific latent heat Q = m x L	
 Partic Core p densit 	les and density practical – investigating ies (CP16)		Density = kilograms per cubic metre Mass = kilograms Volume = metres cubed	**Thermal energy depends on	Temperature, mass, material.		Mass = kg Specific latent heat = J / kg	
 Energ Energ Energ Core p 	y and state changes y calculations practical – investigating water	2. Core prac *CP16 - Aim	tical – investigating densities (CP16) To measure the density of some solids and liquids	**Specific heat capacity, Q **Specific	The amount of energy required to increase the temperature of 1 kg of a substance by 1 °C. The amount of energy required to change 1 kg of a substance (at its boiling point) from liquid to gas. The amount of energy required to change 1 kg of a substance (at its	S. Core practical – investigating water (CP2 *CP17 - To investigate the temperature change as ice melts, and measure		
(CP17 6. Gas te 7. Bendi) emperature and pressure ng and stretching	*CP16 – Density of liquids	lace a measuring cylinder on a palance and zero it. Add some liquid and record the mass and volume, Repeat with different liquids.	latent heat of evaporation **Specific latent heat of		*CP17 – Melting ice	specific heat capacity of water. Place some ice in a boiling tube, measure the temperature then place the tube in a beaker of hot water	
8. Core p (CP18 9. Extens	practical – investigating springs) sion and energy transfers	*CP16 – I Density of a solids	Record the mass of a solid object. Fill a displacement can and place the object in it, catching the water in a measuring cylinder. Record the	melting **Heating curve	melting point) from solid to liquid. As you heat a substance, the temperature rises steadily, with flat sections on the graph first as it	*CP17 –	from a kettle, kept warm by Bunsen, and measure temperature every 60s until fully melted. Temperature rises steadily at first but	
*State of matter	1. Particles and density Solid, liquid or gas.	*CP16 – I Density calculations	volume collected. Divide the mass by the volume.	140	melts, and later as it evaporates.	Melting ice results *CP17 -	levels out during melting. Place a polystyrene cup on a balance, zero it mostly fill with water then	
*Changes of state	Melting: solid \rightarrow liquid Freezing: liquid \rightarrow solid Evaporation: liquid \rightarrow gas Condensation: gas \rightarrow liquid Sublimation: solid \rightarrow gas		Eureka	temperature ¹⁰⁰ ("C) ₈₀ 40 40 20	boiling		measure the mass. Measure the temp. Use an immersion heater connected to a joulemeter to warm the water for 5 minutes and measure the temperature again.	
*Solid *Liquid	Particles touching, neatly ordered, vibrating around a fixed point.			20 0 -20 so	/ lid	*CP17 – SHC calculations	SHC = energy used / (mass x temp change)	
*Gas	Particles widely spaced, random order, moving fast.			4 **Temperature	heat absorbed • Energy calculations Thermal energy change = mass x	6. (**Temperat	Gas temperature and pressure ture A measure of the average kinetic energy of the particles.	
**Forces of attraction	Forces holding particles close to each other: strong in solids, weak in liquids, gone in gases.	3. E	Measuring cylinder	cnange calculations	specific heat capacity x temperature change $\Delta Q = m x c x \Delta T$	**Gas press	ure Every time a gas particle hits a surface it pushes with a small force; gas pressure is the sum of	
**Changing state *Density	Increasing temperature gives particles more (kinetic) energy, allowing them to break the forces of attraction. The mass of 1 cm ³ of a substance	energy and motion **Temperatu	its particles are moving.		Thermal energy change = J Mass = kg Specific heat capacity = J / kg	**Increasing gas pressure	these forces. g Gas pressure increases with temperature and number of particles	
,	Units = kg / m^3		energy of the particles.		Temp change = ⁰ C	│└────	particles.	

₩	CHURCH STRETTON
	SCHOOL

Combined Science - Physics

**Pascals, Pa		The unit of pressure: 1 Pa = 1 N /	8. Core practical – inv				
		m²	*	CP18	- Aim		To expl
**Absolute		The coldest possible temperature					force at
zero, OK		when particles completely stop					spring.
-		moving.	*	CP18	- Setu	р	Suspen
**Kelvins		Measures temperatures relative					from a
		to absolute zero: 0 K = absolute					ruler in
		zero.					with th
**Kelvins and		A kelvin is the same size as a	1				spring/
degrees Cels	sius	degree Celsius, but 0 K = -273 ^o C,	*CP18 –			Hang a	
Ū.		273 K = 0 °C	N	/leasu	ireme	nts	rubber
**Convertin	ng K	Subtract 273					the ext
to ^o C			*	CP18	-		Repeat
**Convertin	g	Add 273	Variations				
°C to K			*	CP18	-		Calcula
**Gas pressure		Gas pressure is directly	С	alcul	ations		
and Kelvins		proportional to temperature in K.					Spring
**Absolute		Pressure is 0 Pa at 0 K because the		6108		No.	
zero and gas		particles are not moving.					11111
pressure							11111
		and the second start she has a					11111
*=!	7. E	Sending and stretching			7		1) M
*Elastic Wr		en sometning returns to its					ſ
Ori		sinal shape after force is applied.				-	
*Inelastic Wh		en something doesn't return to its					I
ori		ginal shape after force is applied.					
**Elasticity Sor		ne objects are elastic when a small					
and force for		ce is applied, but inelastic when a	plied, but inelastic when a 9 Extension			sions a	
size	larg	e force is applied.	*	Snrin	9. EX	A n	noacuro
*Extension	The	increase in length of a spring		onsta	5 Int		ite – NI/n
	whe	en a force is applied.	-	Unsta	int i	uill	$r_{13} - r_{11}/r_{11}$

**Pascals, P	The unit of pressure: 1 Pa = 1 N /	8. Core prac	ctical – investigating springs (CP18)	*Work	The energy transferred by a force.
	m ²	*CP18 - Aim	To explore how increasing the	done	
**Absolute	The coldest possible temperature	force affects the extension of a		**Spring	Energy transferred in stretching = 1/2 x
zero, OK	when particles completely stop		spring.	energy	spring constant x extension ²
	moving.	*CP18 - Setup	Suspend a spring or rubber band	calculations	$E = \frac{1}{2} \times k \times X^2$
**Kelvins	Measures temperatures relative		from a clamp stand and fix a metre		
	to absolute zero: 0 K = absolute		ruler in place so the '0' is level		Energy = J
	zero.		with the bottom of the		Spring constant = N / m
**Kelvins ar	nd A kelvin is the same size as a		spring/band.		Extension = m
degrees Cels	sius degree Celsius, but 0 K = -273°C,	*CP18 –	Hang a 100 g (1 N) mass from the		
	273 K = 0 °C	Measuremen	ts rubber band / spring, and measure		
**Convertin	ng K Subtract 273	the extensions. Repeat up to 1 kg.			
to ^o C		*CP18 - Repeat with different springs.			
**Convertin	ng Add 273	Variations			
^o C to K		*CP18 -	Calculate spring constant as:		
**Gas press	ure Gas pressure is directly	Calculations			
and Kelvins	proportional to temperature in K.		Spring constant = force / extension		
**Absolute	Pressure is 0 Pa at 0 K because the				
zero and ga	s particles are not moving.				
pressure					
	7 Develop and stratching				
7. Bending and stretching		1			
Elastic	when something returns to its				
*Inclastic	When compating decen't return to its				
Inelastic	when something doesn't return to its				
** = = = = : = : = : = :	Company shape after force is applied.				
	Some objects are elastic when a small				
	large force is applied, but melastic when a	9. Ext	ensions and energy transfers		
SIZE *Extoncion	The increase in length of a chring	*Spring A	A measure of the strength of a spring:		
Extension	*Extension The increase in length of a spring		inits = N/m		
**Direct	Doubling A doubles B a graph of B vs	**Spring T	he spring constant is the gradient of		
proportion	Δ goes through the origin	constant a	graph of force vs extension.		
**Metal	The relationship between force and	and graphs			
snring	extension is linear and directly	*Force and F	orce = spring constant x extension		
extension	proportional but becomes non-linear	extension F	= k x X		
extension	with large forces	calculations			
**Rubber	The relationship between force and	F	orce = N		
band	d extension is non-linear.		pring constant = N/m		
extension		E	xtension = m		
	1	*Extension	orce is higher, spring constant is		
		is greater	ower		
		when			