P12-13: Particle model, forces

 and matter
Lesson sequence

1. Particles and density
2. Core practical - investigating densities (CP16)
3. Energy and state changes
4. Energy calculations
5. Core practical - investigating water (CP17)
6. Gas temperature and pressure
7. Bending and stretching
8. Core practical - investigating springs (CP18)
9. Extension and energy transfers

1. Particles and density	
*State of matter	Solid, liquid or gas.
*Changes of state	Melting: solid \rightarrow liquid Freezing: liquid \rightarrow solid Evaporation: liquid \rightarrow gas Condensation: gas \rightarrow liquid Sublimation: solid \rightarrow gas Deposition: gas \rightarrow solid
*Solid	Particles touching, neatly ordered, vibrating around a fixed point.
*Liquid	Particles touching, random order, moving slowly.
*Gas	Particles widely spaced, random order, moving fast.
**Forces of	
attraction	Forces holding particles close to each other: strong in solids, weak in liquids, gone in gases.
**Changing	Increasing temperature gives particles more (kinetic) energy, allowing them to break the forces of attraction.
state	The mass of 1 cm ${ }^{3}$ of a substance. Units = kg / m ${ }^{3}$

*Density and state	Solid > liquid > gas, due to particles being closer together.
*Density	Density = mass / volume calculations $\rho=m / v$
	Density = kilograms per cubic metre Mass = kilograms Volume = metres cubed

2. Core practical - investigating densities (CP16) | *CP16 - | To measure the density of some solids |
| :--- | :--- | Aim *CP16 Density of liquids

*CP16 -
Density of
solids

	volume collected.
*CP16 -	Divide the mass by the volume.
Density	
calculations	

**Temperature A very small hot object has less vs thermal thermal energy than a very large energy cold object, because thermal energy is the energy of all the particles added up.

| **Thermal | Temperature, mass, material. |
| :--- | :--- | energy

depends on...
**Specific heat The amount of energy required to
capacity, Q increase the temperature of 1 kg

| $* *$ Specific | of a substance by $1^{\circ} \mathrm{C}$. |
| :--- | :--- | latent heat of change 1 kg of a substance (at its

evaporation boiling point) from liquid to gas.
**Specific \quad The amount of energy required to
latent heat of \quad change 1 kg of a substance (at its
melting \quad melting point) from solid to liquid

**Heating \quad As you heat a substance, the | curve | temperature rises steadily, with |
| :--- | :--- | flat sections on the graph first as it melts, and later as it evaporates.

4. Energy calculations

4. Energy calculations	
**Temperature	Thermal energy change $=$ mass x
change	
calculations	specific heat capacity x temperature change $\Delta \mathrm{Q}=\mathrm{m} \mathrm{x} \mathrm{c} \mathrm{x} \Delta \mathrm{T}$
Thermal energy change $=\mathrm{J}$	
Mass $=\mathrm{kg}$	
Specific heat capacity $=\mathrm{J} / \mathrm{kg}$	
$T_{\text {emp change }={ }^{\circ} \mathrm{C}}$	

hange $=$ mass x heat capacity x temperature chang

Thermal energy change $=\mathrm{J}$ Temp change $={ }^{\circ} \mathrm{C}$

$* *$ State change calculations	Thermal energy $=$ mass x specific latent heat $\mathrm{Q}=\mathrm{m} \times \mathrm{L}$
Thermal energy $=\mathrm{J}$	
Mass $=\mathrm{kg}$	
Specific latent heat $=\mathrm{J} / \mathrm{kg}$	

5. Core practical - investigating water (CP17)	
*CP17 - Aim	To investigate the temperature change as ice melts, and measure specific heat capacity of water.
*CP17 - Melting ice	Place some ice in a boiling tube, measure the temperature then place the tube in a beaker of hot water from a kettle, kept warm by Bunsen, and measure temperature every 60s until fully melted.
*CP17 - Melting ice results	Temperature rises steadily at first but levels out during melting.
*CP17 - SHC	Place a polystyrene cup on a balance, zero it, mostly fill with water then measure the mass. Measure the temp. Use an immersion heater connected to a joulemeter to warm the water for 5 minutes and measure the temperature again.
*CP17 - SHC calculations	SHC = energy used / (mass x temp change)

6. Gas temperature and pressure
**Temperature A measure of the average kinetic energy of the particles.

**Gas pressure

a gas particle hits a surface it pushes with a small force; gas pressure is the sum of these forces.
**Increasing
gas pressure
increases with temperature and number of particles.

