

Combined Science - Physics

CP10/11 Knowledge organiser

P10-11: Magnetism and electromagnetic induction

Lesson sequence

- 1. Magnets and magnetic fields
- Electromagnetism 2.
- Magnetic forces (HT) 3.
- Transformers 4.
- Transformers and energy E

J. Hunsh	officers and chergy	1		-	
1. Magnets and magnetic fields			2. Electroma		
*Permanent	A magnet that is always magnetic.	*	Electromagnetis	m Current	
magnet				wire cr	
*Temporary	A magnet that is not always			around	
magnet	magnetic.	*	Wire magnetic	Concen	
**Induced	When something becomes	f	ield shape		
magnet	temporarily magnetic when close to	*	Wire magnetic	Stronge	
	another magnet.	f	ield strength	with hig	
*Uses of	Motors, loud speakers, generators,	*	Wire magnetic	Right h	
magnets	door locks, knife holders.	f	ield direction	points t	
**Magnetic	The area of magnetic force around a			in same	
field	magnet.	*	*Solenoid	A coil o	
*Bar	Curved lines going from north to			running	
magnet	south	*	*Solenoid	Outside	
field shape		n	nagnetic field	magnet	
**Uniform	When the north of one magnet is	s	hape	Inside:	
magnetic	near the south of another, straight	*	*Solenoid	From n	
field shape	field lines connect them.	n	nagnetic field		
*Magnetic	From north to south	d	irection		
field		*	*Electromagnet	A temp	
direction				placing	
**Plotting a	Draw around a magnet. Place a			solenoi	
magnetic	plotting compass on it and draw a				
field	small arrow to show needle direction.		Electromagnetic field due to the	re flow of current	
	Move a cm in that direction and		Connor		
	repeat. Connect arrows to form lines.	N	3777777777		
	Repeat.		≈₩₩₩₩₩₩		
**Earth's	The North Pole is a magnetic south		Solenoid Co	ii 🗸	
magnetic	pole (because it attracts the north of				
field	bar magnet).		▼ ¹ out	+ 1in	

2. Electromagnetism					
*Electromagnetism Current flowing through a					
	wire creates a magnetic field				
	around it.				
*Wire magnetic	Concentric circles.				
field shape					
*Wire magnetic	Stronger nearer the wire and				
field strength	with higher current.				
*Wire magnetic	Right hand rule – thumb				
field direction	points towards negative, field				
	in same direction as fingers.				
**Solenoid	A coil of wire with current				
	running through it.				
**Solenoid	Outside: similar to bar				
magnetic field	magnet.				
shape	Inside: almost uniform				
**Solenoid	From negative to positive.				
magnetic field					
direction					
**Electromagnet	A temporary magnet made by				
	placing an iron core inside a				
	solenoid.				

		-		
	3. Magnetic forces (HT)	**How	Current passing through the	
*Motor	Force produced when the magnetic	transformers	primary coil induces a current in	
effect	field from a permanent magnet	work	the secondary coil of higher	
	pushes a magnetic field from a wire.		voltage and lower current 9or	
**Direction	Flemming's left-hand rule – index		vice versa).	
of force from	finger points in direction of	**Conservation	If the voltage increases, the	
motor effect	magnetic field, middle finger points	of energy in	current decreases, so energy is	
	from + to – current, thumb points in	transformers	conserved since: Power =	
	direction of force.		current x voltage	
**Force from	Magnetic field and electric field are	**Transformer	Primary current x primary	
motor effect	at right angles, wire is longer,	calculations	voltage = secondary current x	
is greatest	current is greater, magnet is		secondary voltage	
when	stronger.		$V_p \times I_p = V_s \times I_s$	
**Magnetic	The strength of a magnetic field.			
flux density,			Voltage = volts	
В			Current = amps	
**Newtons	Units of magnetic flux density.			
per amp				
metre (N / A				
m)				
**Tesla, T	Same as newtons per amp metre.			
**Calculating	Force = magnetic flux density x	Transformer		
forces from	current x length	Core		
the motor	F = B x I x L	5. Transformers and energy		
effect		*National grid	The system of cables and	
	Force = newtons		transformers that transfers	
	Magnetic flux density = teslas		electricity from power stations	
	Current = amps		to homes and businesses	
	Length = metres	*Voltage in the	Power station = 25 kV	
1 Transformers		national grid	Overhead cables = 400 kV	
*Transformer	A device that changes the		Factories = 33 kV	
manoromier	notential difference of a an		Homes = 230 V	
	electricity supply	*Step-up	Increase voltage and decreases	
*Electromagn	etic When voltage in one coil of wire	transformer	current.	
induction	causes a voltage in another.	*Step-down	Decrease voltage and increases	
**Transforme	r Two coils of wire wrapped	transformer	current.	
structure	around an iron core. Current	***Factors	Coils: more coils \rightarrow higher	
	goes in the primary coil and	affecting the	voltage	
	comes out from the secondary	potential	Frequency: how many times the	
	coil.	difference	magnetic field changes or moves	
		induced in a	past the wire	
		1 -		

transformer ***Transformers Transformers only work with alternating current. and current

