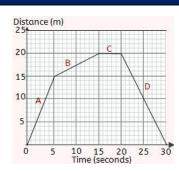


Combined Science - Physics

CP1 Knowledge organiser

P1: Motion

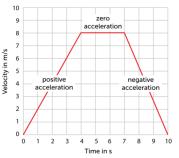
Lesson sequence


- 1. Vectors and scalars
- 2. Speed-time graphs
- 3. Distance-time graphs
- 4. Acceleration
- 5. Velocity-time graphs

1. Vectors and scalars	
Magnitude	
Scalar	A quantity with magnitude (but no
quantity	direction).
Scalar	Distance – 10 m
examples	Speed – 25 m/s
	Mass – e.g. 50 kg
Vector	A quantity with magnitude and
quantity	direction.
Vector	Displacement – 10 m north
examples	Velocity – 25 m/s east
	Force – 30 N left
	Acceleration – 3 m/s ² south
	Momentum – 400 N m/s right
Vector	Vectors can be represented by
arrows	arrows, with the length of the
	arrow representing the
	magnitude.
Displacement	The distance and direction
	travelled in a straight line.
Velocity	Your speed in a certain direction.

2. Speed	
Units of	Metres per second, m/s.
speed	
Speed – word	Speed = distance / time
equation	
	Speed = m/s
	Distance = m
	Time = s
Speed –	v = x/t
symbol	
equation	v = speed
	x = distance
	t = time

Instantaneous	Speed at a particular point in
speed	time.
Average	The average speed across the
speed	whole of a journey, calculate from
	v = x/t.
Calculating	Distance = average speed x time
distance	x = v x t
travelled –	
word	Distance = m
equation	Average speed = m/s
	Time = s
Measuring	Measure the distance between
speed	two points and time how long an
	object takes to pass, then
	calculate using $v = x/t$.
Light gates	Equipment that can be used for
	measuring time accurately with
	fast-moving objects to help find
	their speed.
Some typical	Walking – 1-2 m/s
speeds	Running – 3-8 m/s
	Cycling – 5-20 m/s
	Driving – 10-40 m/s
	Flying – 250 m/s


3. Distance-time graphs	
Distance-time	A graph describing how your
graph	distance from the start
	changes over the course of a
	journey. Time is on the x-axis
	and distance on the y-axis.
Distance-time	Horizontal line
graphs –	
stationary	
Distance-time	Forwards – line sloping up
graphs –	
constant speed	Backwards – line sloping down
Distance-time	Steeper line = faster
graphs – line	
gradient	
Calculating	Speed = change in distance /
speed from a	change in time
distance-time	
graph	Speed = change in y / change
	in x

	4. Acceleration
Acceleration	Changing velocity
You	- You change speed
accelerate	- You change direction
when	
Units of	Metres per second squared, m/s ²
acceleration	
Positive and	Positive acceleration = speeding up
negative	Negative acceleration = slowing
acceleration	down
Deceleration	Slowing down, negative
	acceleration.
Acceleration	Acceleration = change in speed /
– word	time
equation	
•	Acceleration = m/s ²
	Change in speed = m/s
	Time = s
Acceleration	a = (v – u)/ t
– symbol	
equation	a = acceleration
•	v = final speed
	u = initial speed
	t = time
Linking	Use the equation:
acceleration	$x = (v^2 - u^2) / 2a$
and Velocity	
travelled	x = Velocity travelled
	a = acceleration
	v = final speed
	u = initial speed

Acceleration	10 m/s ²
during free	
all	

	5. Velocity-time graphs
Velocity-	A graph showing how your velocity
time graph	(speed) changes over time. Time is
	on the x-axis, velocity is on the y-
	axis.
Velocity-	Horizontal line
time graphs	
constant	
speed	
Velocity-	Speeding up – line sloping up
time graphs	
-	Slowing down – line sloping down
acceleration	
Velocity-	Horizontal line on the x-axis
time graphs	
Stationary	
Velocity-	Steeper line = greater acceleration
time graphs	
– line	
gradient	
Calculating	Acceleration = change in velocity/
acceleration	change in time
on a	
velocity-	Acceleration = change in y / change
time graph	in x
Calculating	Distance = area under the graph.
distance	
travelled	Divide the graph into rectangles
from a	and triangles, find the area of each
velocity-	and add them together.
time graph	

