P1: Motion

Lesson sequence

1. Vectors and scalars
2. Speed-time graphs
3. Distance-time graphs
4. Acceleration
5. Velocity-time graphs

1. Vectors and scalars	
Magnitude	A scientific word for size.
Scalar quantity	A quantity with magnitude (but no direction).
Scalar examples	Distance - 10 m Speed - $25 \mathrm{~m} / \mathrm{s}$ Mass - e.g. 50 kg
Vector quantity	A quantity with magnitude and direction.
Vector examples	Displacement - 10 m north Velocity - $25 \mathrm{~m} / \mathrm{s}$ east Force - 30 N left Acceleration $-3 \mathrm{~m} / \mathrm{s}^{2}$ south Momentum $-400 \mathrm{~N} \mathrm{~m} / \mathrm{s}$ right
Vector arrows	Vectors can be represented by arrows, with the length of the arrow representing the magnitude.
Displacement	The distance and direction travelled in a straight line.
Velocity	Your speed in a certain direction.
	2. Speed
Units of speed	Metres per second, m/s.
Speed - word equation	$\begin{aligned} & \text { Speed }=\text { distance } / \text { time } \\ & \text { Speed }=\mathrm{m} / \mathrm{s} \\ & \text { Distance }=\mathrm{m} \\ & \text { Time }=\mathrm{s} \end{aligned}$
Speed symbol equation	$\begin{aligned} & v=x / t \\ & v=\text { speed } \\ & x=\text { distance } \\ & t=\text { time } \end{aligned}$

4. Acceleration	
Acceleration	Changing velocity
You accelerate when...	- You change speed - You change direction
Units of acceleration	Metres per second squared, m/s ${ }^{2}$
Positive and negative acceleration	Positive acceleration = speeding up Negative acceleration = slowing down
Deceleration	Slowing down, negative acceleration.
Acceleration - word equation	```Acceleration = change in speed / time Acceleration = m/s}\mp@subsup{}{}{2 Change in speed = m/s Time = s```
Acceleration - symbol equation	$\begin{aligned} & a=(v-u) / t \\ & a=\text { acceleration } \\ & v=\text { final speed } \\ & u=\text { initial speed } \\ & t=\text { time } \end{aligned}$
Linking acceleration and Velocity travelled	Use the equation: $\begin{aligned} & x=\left(v^{2}-u^{2}\right) / 2 a \\ & x=\text { Velocity travelled } \\ & a=\text { acceleration } \\ & v=\text { final speed } \\ & u=\text { initial speed } \end{aligned}$

\section*{| Acceleration | $10 \mathrm{~m} / \mathrm{s}^{2}$ |
| :---: | :---: |
 during free
 fall}

5. Velocity-time graphs	
Velocitytime graph	A graph showing how your velocity (speed) changes over time. Time is on the x-axis, velocity is on the y axis.
Velocitytime graphs - constant speed	Horizontal line
Velocitytime graphs acceleration	Speeding up - line sloping up Slowing down - line sloping down
Velocitytime graphs - Stationary	Horizontal line on the x-axis
Velocitytime graphs - line gradient	Steeper line = greater acceleration
Calculating acceleration on a velocitytime graph	Acceleration = change in velocity/ change in time Acceleration = change in $\mathrm{y} /$ change in x
Calculating distance travelled from a velocitytime graph	Distance = area under the graph. Divide the graph into rectangles and triangles, find the area of each and add them together.

ime graph

