KS4 Science: Energy – Forces Doing Work KS4 Science: Forces and their Effects

CP7: Energy – Forces Doing Work (Paper 2) CP8: Forces and their Effects (Paper 2)

CP8: Forces and their Effects (Paper 2)				
Lesson	Objectives Tracker Sheet	Date covered	this well	more work on this
CP7a Work and power	P8.1 Describe the changes involved in the way energy is stored when systems change.			
	P8.4 Identify the different ways that the energy of a system can be changed: a through work done by forces b in electrical equipment c in heating. P8.5 Describe how to measure the work done by a			
	force and understand that energy transferred (joule, J) is equal to work done (joule, J).			
	P8.6 Recall and use the equation: work done (joule, J) = force (newton, N) × distance moved in the direction of the force (metre, m), $E = F \times d$.			
	P8.7 Describe and calculate the changes in energy involved when a system is changed by work done by forces.			
	P8.12 Define power as the rate at which energy is transferred and use examples to explain this definition.			
	P8.13 Recall and use the equation: power (watt, W) = work done (joule, J) ÷ time taken (second, s), P = E/t.			
	P8.14 Recall that one watt is equal to one joule per second, J/s.			
CP8a Objects affecting each other	P9.1 Describe, with examples, how objects can interact: a at a distance without contact, linking these to the gravitational, electrostatic and magnetic fields involved			
	b by contact, including normal contact force and friction c producing pairs of forces which can be represented as vectors			
	P9.2 Explain the difference between vector and scalar quantities using examples.			
CP8b Vector diagrams	H Use vector diagrams to illustrate resolution of forces, a net force, and equilibrium situations (scale drawings only).			
	H Draw and use free body force diagrams.			
	H Explain examples of the forces acting on an isolated solid object or a system where several forces lead to a resultant force on an object and the special case of balanced forces when the resultant force is zero.			