CP2: Motion and Forces (Paper 1)

CP2: WOUOH and Forces (Paper 1)						
Lesson	Objectives Tracker Sheet	Date covered	I know this well	I need to do more work on this		
CP2a Resultant forces	P2.14 Recall Newton's first law and use it in the following situations: (a) Where the resultant force on a body is zero, i.e. the body is moving at a constant velocity or is at rest (b) Where the resultant force is not zero, i.e. the speed and/or direction of the body changes.					
CP2b Newton's First Law	P2.14 Recall Newton's first law and use it in the following situations: (a) Where the resultant force on a body is zero, i.e. the body is moving at a constant velocity or is at rest (b) Where the resultant force is not zero, i.e. the speed and/or direction of the body change(s) P2.20 H Explain that an object moving in a circular orbit at constant speed has a changing velocity (qualitative only). P2.21 H Explain that for motion in a circle there must					
CP2c Mass and weight	be a resultant force known as a centripetal force that acts towards the centre of the circle P2.16 Define weight, recall and use the equation: weight (newton, N) = mass (kilogram, kg) × gravitational field strength (newton per kilogram,					
	N/kg), W = m × g. P2.17 Describe how weight is measured. P2.18 Describe the relationship between the weight					
CP2d Newton's Second Law	of a body and the gravitational field strength. P2.15 Recall and use Newton's Second Law as: force (newton, N) = mass (kilogram, kg) × acceleration (metre per second squared, m/s2), F = m × a					
	P2.22 H Explain that inertial mass is a measure of how difficult it is to change the velocity of an object (including from rest) and know that it is defined as the ratio of force over acceleration					
CP2d Investigating acceleration - Core practical	P2.19 Investigate the relationship between force, mass and acceleration by varying the masses added to trolleys.					
CP2e Newton's Third Law	P2.23 Recall and apply Newton's Third Law to equilibrium situations					
	P2.23 H Recall and apply Newton's Third Law both to equilibrium situations and to collision interactions and relate it to the conservation of momentum in collisions.					
CP2f Momentum	P2.23 H Recall and apply Newton's Third Law both to equilibrium situations and to collision interactions and relate it to the conservation of momentum in collisions.					

KS4 Science: Motion and forces

		KS4 Science: Motion and forces			
	P2.24 H Define momentum, recall and use the equation: momentum (kilogram metre per second, kg m/s) = mass (kilogram, kg) \times velocity (metre per second, m/s) p = m \times v.				
	P2.25 H Describe examples of momentum in collisions.				
	P2.26 H Use Newton's Second Law as: force (newton, N) = change in momentum (kilogram meter per second, kg m/s) / time (second, s) F = (mv – mu) / t				
CP2g Stopping distances	P2.27 Explain methods of measuring human reaction times and recall typical results.				
	P2.28 Recall that the stopping distance of a vehicle is made up of the sum of the thinking distance and the braking distance.				
	P2.29 Explain that the stopping distance of a vehicle is affected by a range of factors including: (a) the mass of the vehicle				
	 (b) the speed of the vehicle (c) the driver's reaction time (d) the state of the vehicle's brakes (e) the state of the road (f) the amount of friction between the tyre and the road surface. 				
	P2.30 Describe the factors affecting a driver's reaction time including drugs and distractions				
CP2h Crash hazards	P2.26 H Use Newton's Second Law as: force (newton, N) = change in momentum (kilogram meter per second, kg m/s) / time (second, s) F = (mv – mu) / t.				
	P2.31 H Explain the dangers caused by large decelerations and estimate the forces involved in typical situations on a public road.				