CP1: Motion (Paper 1)

CP1: WIOLION (Paper 1)				
Lesson	Objectives Tracker Sheet	Date covered	I know this well	I need to do more work on this
CP1a Vectors and scalars	P2.1 Explain that a scalar quantity has			
	magnitude (size) but no specification direction.			
	P2.2 Explain that a vector quantity has both magnitude (size) and a specific direction.			
	P2.3 Explain the difference between vector and			
	scalar quantities.			
	P2.4 Recall vector and scalar quantities			
	including:			
	(a) displacement/distance			
	(b) velocity/speed (c) acceleration			
	(d) force			
	(e) weight/mass			
	(f) momentum			
	(g) energy.			
	P2.5 Recall that velocity is speed in a stated direction.			
CP1b Distance/time graphs	P2.6 Recall and use the equations:			
	(average) speed (metre per second, m/s) =			
	distance			
	(metre, m) / time (second, s)			
	(b) distance travelled (metre, m) = average speed (metre per second, m/s) x time (second,			
	S).			
	D2.7 Analysis distance/time graphs including			
	P2.7 Analyse distance/time graphs including determination of speed from the gradient			
	P2.11 Describe a range of laboratory methods for determining the speeds of objects such as			
	the use of light gates			
	P2.12 Recall some typical speeds encountered			
	in everyday experience for wind and sound, and			
	for walking, running, cycling and other			
CP1c Acceleration	transportation systems. P2.8 Recall and use the equation: acceleration			
	(metre per second squared, m/s2) = change in			
	velocity (metre per second, m/s) / time taken			
	(second, s); $a = (v - u) / t$.			
	P2.9 Use the equation: (final velocity)2 ((metre/second)2, (m/s)2) – (initial velocity)2			
	$((metre/second)2, (m/s)2) = 2 \times acceleration$			
	(metre per second squared, m/s2) x distance			
	(metre, m); $v = 2 - u = 2 \times a \times x$			
	P2.13 Recall that the acceleration, g, in free fall is 10 m/s2 and be able to estimate the			
	magnitudes of everyday accelerations			
CP1d Velocity/time graphs	P2.10 Analyse velocity/time graphs to: (a)			
	compare acceleration from gradients qualitatively			
	(b) calculate the acceleration from the gradient			
	(for uniform acceleration only) (c) determine the distance travelled using the area between the			
	graph line and the time axis (for uniform			
	acceleration only).			