

C9: Quantitative chemistry

Lesson sequence

- 1. Formula masses
- 2. Calculating empirical formulae
- 3. Conservation of mass
- 4. Calculating reacting masses
- 5. Moles (HT)
- 6. Stoichiometry of reactions (HT)

1. Formula masses			
Molecular	Gives the number of atoms of each		
formula	element present in a molecule.		
Empirical	Gives the number of atoms of each		
formula	element present in a compound as the		
	simplest whole number ratio.		
Converting	Divide the number of each atom by		
molecular	the highest common factor of all of		
to	the atoms.		
empirical			
formulae			
Molecular	$C_2H_4 \rightarrow CH_2$ (divided by 2)		
to	$C_6H_{12}O_6 \rightarrow CH_2O$ (divided by 6)		
empirical	$H_2O \rightarrow H_2O$ (divided by 1)		
formula	·		
examples			
Relative	The mass of an atom relative to 1/12th		
atomic	the mass of carbon-12. No units.		
mass, Ar			
Relative	The mass of one unit of a formula,		
formula	found by adding the relative atomic		
mass, Mr	masses of all of the atoms in it.		

Worked examples W1

Calculate the M_r of carbon dioxide (CO₂).

=
$$A_r(C) + (2 \times A_r(O))$$

= 12 + (2 × 16)

So,
$$M_r$$
 of $CO_2 = 44$

Relative Formula Mass – RFM

The Relative Formula Mass (M_r) of a compound is the sum of the relative atomic masses of all its elements added together.

In order to calculate the RFM of a compound you must know the formula and the RAM's of each of the atoms involved (H = 1, O = 16).

Example: Find the M_r of water, H₂O

Step 1: Write the formula $H_2O = H + H + O$

Step 2: Substitute the A_r 's 1 + 16

Step 3: Add them up to get the M_r 1 + 1 + 16 = 18

H = 1 Hydrogen	C = 12 Carbon	N = 14 Nitrogen	O = 16 Oxygen	Na = 23 Sodium	Mg = 24 Magnesium	Al = Aluminium
P = 31 Phosphorous	S = 32 Sulphur	Fe = 56 Iron	Cu = 63.5 Copper	Be = Beryllium	Cl = Chlorine	Ca = Calcium
Using the met	de – NaCl	the A _r 's above co	Soc	M _r 's for the follo	– NaOH	Aluminium oxide –Al ₂ O ₃
Copper sulpha	nte – CuSO ₄	$Ethane-C_2H_6\\$		Ethene $-C_2H_4$	4 Calcium	hydroxide – Ca(OH) ₂
				•••••		
Iron sulphate -	` /-		um chloride	•		ulphate - (NH ₄) ₂ SO ₄

2. Calculating empirical formulae			
To calculate	- Write each element's symbol		
empirical	with a ratio (:) symbol between		
formulae	- Write out the amount of each		
from	element from the questions		
experimental	- Divide each amount by the A _r		
data	of the element		
	 Divide each answer by the 		
	smallest answer to get a ratio		
	- Write the empirical formula		
To find a	- Calculate M _r for the empirical		
molecular	formula		
formula	- Divide the M _r of the		
from an	molecular formula by this		
empirical	number		
formula	- Multiply the empirical		
	formula by your answer		

Symbol for element	Ca	Cl
Mass (g)	10.0	17.8
Relative atomic mass, A_{r}	40	35.5
Divide the mass of each element by its relative atomic mass	$\frac{10.0}{40} = 0.25$	$\frac{17.8}{35.5} = 0.5$
Divide the answers by the smallest number to find the simplest ratio	$\frac{0.25}{0.25} = 1$	$\frac{0.5}{0.25} = 2$
Empirical formula	CaCl ₂	

D To calculate an empirical formula, each element needs its own column of working.

Empirical formula

Empirical formula – is the simplest formula which represents the ratio of atoms in a compound. There is one simple rule to follow: always divide the data you are given by the A_r of the element. Then simplify the ratio to give you the simplest formula.

Example: Find the empirical formulae of an oxide of hydrogen, produced by reacting 1g of hydrogen with 8g of oxygen

Step 1: Write down the relative atomic masses of the elements involved - A_r of H = 1 and A_r of O = 16

Step 2: Divide the masses given in the question by the A_r's of the elements –

H = 1/1 = 1: Q = 8/16 = 0.5

Step 3: Identify the ratio of atoms in the compound and simplify it, the easiest way to do this is to divide both sides by the smallest number and then make sure both sides are whole numbers—

1/0.5 : 0.5/0.5 = 2:1

Step 4: Convert your answer to the empirical formula, by substituting the numbers for the atomic symbols and adding the required number, representing the number of atoms, after the symbol $-2:1 = H_2O$

1) 4g of Titanium read Carbon	(Ti = 48, C = 12)
empirical formula =	
2) 1.12g of Iron reacti	ing with 0.48g of
<u> </u>	(Fe = 56, O = 16)
• •	` ,
	•••••
	•••••
•••••	•••••
empirical formula =	
3) 0.31g of Phosphoro 1.07g of Chlorine	
empirical formula =	
4) 6g of Magnesium r	
Oxygen	(Mg = 24, O = 16)
empirical formula =	

	3. Conservation of mass			
Conservation of mass	The total mass of products must equal the total mass of reactants.			
Precipitation reaction	A reaction that produces a solid precipitate by mixing two solutions.			
Closed system	A system in which no chemicals can enter or leave, such as a sealed test tube.			
Open system	A system in which chemicals can enter or leave – such as an open test tube.			
Conservation of mass in a closed system	No atoms are able to enter or leave, so the total mass stays the same – for example a precipitation reaction in a closed flask.			
Conservation of mass in an open system	For example, a carbonate reacting with acid producing CO ₂ bubbles: the mass appears to decrease because you can't weigh the gas that goes into the air, however it is still there.			

lead nitrate solution

potassium iodide solution

yellow precipitate of lead iodide in a colourless solution of potassium nitrate

empty flask

B The total mass of the reactants always equals the total mass of products.

addition of the same of the sa		
lculating reacting masses		
Any reactant which is not used up		
completely in a reaction because		
there is more of it than needed.		
Any reactant of which is		
completely used up in a reaction.		
The limiting reactant determines		
how much product is made.		
- Write out the balanced equation		
- Write the mass of the chemical		
you are given, and 'm' for the		
mass you are finding under their		
symbols		
- Draw a line underneath the		
masses to make it a division		
- Calculate the M _r of each,		
multiply by the big numbers and		
write under the line.		
- Put an equals sign between the		
two to form an equation.		
- Solve for 'm'		

Calculating the mass of a product

Sometimes, we need to be able to work out how much of a substance is produced in a chemical reaction.

Example: What mass of hydrogen is produced by the electrolysis of 4g of water?

Step 1: Write down the balanced equation, and underline the substances mentioned in the question:

$$2H_2O \rightarrow 2H_2 + O_2$$

Step 2: Work out the relative formula mass (M_r) of each substance:

$$2 \times ((2x1) + 16) \rightarrow 2 \times (2 \times 1) + (2 \times 16)$$

Step 3: Since the question only mentions water and hydrogen, you can ignore the oxygen. You just need the ratio of mass of

H₂O to mass of H₂:

So, 36g of water produces 4g of hydrogen.

4g of water produces

1g of water produces $(4 \div 36)$ g of hydrogen

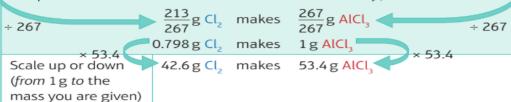
 $(4 \div 36)$ x 4 g of hydrogen

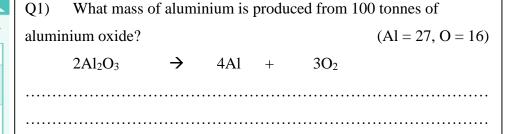
(4 ÷ 30) X 4 g 01 Hydrog

= 0.44g of hydrogen

Worked example

Calculate the mass of chlorine needed to make 53.4g of aluminium chloride.


Write the balanced equation $2Al + 3Cl_2 \rightarrow 2AlCl_3$ Calculate relative formula masses of the substances needed $M_r Cl_2 = 2 \times 35.5 = 71$ $M_r AlCl_3 = 27 + (3 \times 35.5) = 133.5$


Calculate ratio of masses (multiply $M_{\rm r}$ values by the balancing numbers shown in the equation).

3Cl₂ makes 2AlCl₃

■ so **3** × 71 = <u>213</u> g Cl₂ makes **2** × 133.5 = <u>267</u> g AlCl₃ ■

Work out the mass for 1 g of reactant or product. (Here we want 1 g of the product because that's the mass we know already.)

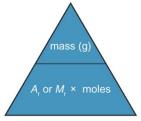
(Divide both sides by 36)

Q2) What mass of ethanol (C_2H_5OH) is produced from the reaction of 14 tonnes of ethane (C_2H_4)? (C = 12, H = 1, O = 16)

 $C_2H_{4\ (g)}$ + $H_2O\ _{(g)}$ \rightarrow $C_2H_5OH\ _{(l)}$

.....

	5. Moles (HT)		
Moles	The unit of measurement of		
	chemicals – one mole of any chemical		
	is the same amount.		
One mole	An amount of a chemical such that		
	one mole has a mass in grams that is		
	the same as its relative formula mass.		
Avogadro's	6.02×10^{23} : the number of		
constant	atoms/molecules present in one mole		
	of a substance.		
Calculating	Quantity in moles = mass / relative		
moles from	formula mass		
mass			
	Quantity in moles = number of		
moles from	particles / 6.02 x 10 ²³		
a number			
of particles			
Calculating	Number of particles = (mass / relative		
the	formula mass) x 6.02 x 10 ²³		
number of			
particles			
from a			
mass of			
substance			


Worked example W2

10.8 g of aluminium reacted with 42.6 g of chlorine, Cl_{2^t} to produce aluminium chloride, AlCl₃. Deduce the balanced equation for the reaction.

	Al	Cl ₂
Calculate the number of moles (= mass/A _r or M _r)	$\frac{10.8}{27} = 0.4$	$\frac{42.6}{2 \times 35.5} = 0.6$
Divide by the smaller	$\frac{0.4}{0.4} = 1$	$\frac{0.6}{0.4} = 1.5$
Simplest whole number ratio	1 × 2 = 2	1.5 × 2 = 3

So 2 mol of Al react with 3 mol of Cl₂. The equation is completed by adding the formula of the product and balancing in the normal way.

 $2Al + 3Cl_2 \rightarrow 2AlCl_3$

B To rearrange the equation with this triangle, cover up the quantity you want to calculate and what you can see gives you the calculation to use.

r			
6. Stoichiometry (HT)			
Stoichiometry	The ratio of the number of		
	moles of each substance		
	involved in a reaction.		
Stoichiometric	The 'big' numbers written		
coefficient	in a balanced equation.		
Deducing	- Calculate the number of		
stoichiometry	moles present of each of		
	the reactants (or products)		
	- Find the simplest whole-		
	number ratio		
	- Balance in the normal		
	way to find the numbers		
	of products (or reactants)		

Worked example W1

$$2NH_4Cl + Ca(OH)_2 \rightarrow 2NH_3 + CaCl_2 + 2H_2O$$

- a Which is the limiting reactant?
- b Calculate the mass of ammonia formed.
- a The equation shows that 2 mol of NH_4Cl reacts with 1 mol of $Ca(OH)_2$ number of moles of $Ca(OH)_2 = 4.00 \, g/(40 + 2(16 + 1)) = 0.0541 \, mol$

We need: $2 \times 0.0541 = 0.108 \,\text{mol NH}_4 \,\text{Cl}$ to react with $0.0541 \,\text{mol of Ca(OH)}_2$.

We have: $1.50 \text{ g/}(14 + (4 \times 1) + 35.5) = 0.0280 \text{ mol}$

We have less than the 0.0541 mol of NH₂Cl needed; NH₂Cl = limiting reactant.

b The equation shows that the number of moles of NH₃ made equals the number of moles of NH₄Cl used.

So, 0.0280 mol of NH₄Cl forms 0.0280 mol of NH₃ mass of NH₃ formed = mol × M_c = 0.0280 × (14 + (3 × 1)) = 0.476 g