CC8: Acids and alkalis

Lesson sequence

1. Acids, alkalis and indicators
2. Acids in detail (HT)
3. Bases and salts
4. Core practical - preparing copper sulfate (CP8)
5. Alkalis and balancing equations
6. Core practical - investigating neutralisation
7. Alkalis and neutralisation
8. Reactions of acids with metals and carbonates
9. Solubility

1. Acids, alkalis and indicators	
pH scale	A scale running from 0 to 14 that measures how acid or alkaline a solution is.
Acid	A solution with a pH less than 7.
Alkali	A substance with a pH greater than 7.
Neutral	A substance with a pH equal to 7.
Indicator	A substance that changes colour depending on the pH.
Common	Litmus: red in acid, blue in alkali Methyl orange: red in acid, orange in alkali Phenolphthalein: colourless in acid, pink in alkali
Universal indicator	A mixture of several indicators that is red in strong acid, green when neutral and purple in strong alkali.
Acids and ions	Acids dissolve in water to produce an excess of hydrogen ions (H+).
Alkalis and ions	Alkalis dissolve in water to produce an excess of hydroxide ions (OH-).
Hydrochloric acid	Formula: HCl Hydrogen ions formed: 1 Anion formed: Chloride, Cl

Combined Science - Chemistry

CC8 Knowledge organiser

Nitric acid	Formula: HNO_{3} Hydrogen ions formed: 1 Anion formed: Nitrate, $\mathrm{NO}_{3}{ }^{-}$	3. Bases and salts	
		Base	A substance that neutralises an acid to form a salt and water.
Sulfuric acid	Formula: $\mathrm{H}_{2} \mathrm{SO}_{4}$ Hydrogen ions formed: 2 Anion formed: Sulfate, $\mathrm{SO}_{4}{ }^{2-}$	Salt	A compound formed from the metal cation of a base and the non-metal anion of an alkali.
Ions and pH	The higher the hydrogen ion concentration the lower the pH , the higher the hydroxide ion concentration, the higher the pH .	Naming salts	Two-part names. First part = the metal from the base, second part = the anion from the acid.
2. Acids in detail (HT)		Acids and their anions	Sulfuric acid \rightarrow sulfate Nitric acid \rightarrow nitrate Hydrochloric acid \rightarrow chloride
Concentrated	A solution with a large amount		
		Reaction of metal oxides with acid	Metal oxide + acid \rightarrow salt + water E.g. Magnesium oxide + hydrochloric acid \rightarrow magnesium chloride + water $\begin{aligned} & \mathrm{MgO}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+ \\ & \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{aligned}$
Dilute solution	A solution with a small amount of solute dissolved in a given volume.		
pH and hydrogen ion concentration	Every step down the pH scale is a ten-fold increase in hydrogen ion concentration and vice versa. - pH 3 to $1=100$ times increase - pH 4 to $7=1000$ times decrease		
		Preparing soluble salts	- Gently warm a beaker of acid - Add a spatula of metal oxide and stir until dissolved - Repeat until it no longer dissolves - Filter to remove excess oxide - Allow water to evaporate to produce pure crystals
Dissociation	When an acid dissolves in water, it splits up into positive hydrogen ions and negative anions.		
Strong acids	Acids that dissociate fully when dissolved in water - every single		

4. Core practical - preparing copper sulfate (CP8)	
*CP8 - Aim	To produce crystals of copper sulfate by reacting copper oxide with sulfuric acid.
*CP8 - Setup	Place $20 \mathrm{~cm}^{3}$ of dilute sulfuric acid in a beaker and warm to $50^{\circ} \mathrm{C}$.
*CP8 - Adding excess copper oxide	Add a spatula of black copper oxide and stir until dissolved. Repeat this process until a spatula does not fully dissolve.
*CP8 - Filtration	Filter the solution and collect the filtrate.
*CP8 -	- Place the filtrate in an evaporating basin - Heat the evaporating basin by placing above a beaker of boiling water. - -Remove from heat when crystals start to form. - Leave somewhere warm to dry.
*CP8 - Results	As the copper oxide dissolves the sulfuric acid turns blue. When there is copper oxide remaining, the solution looks black from the copper oxide floating in it. Blue diamond-shaped crystals should form.

C

	CHURCH STRETTON SChoot		Combined Sc
5. Alkalis and balancing equations		7. Alkalis and neutralisation	
Bases and alkalis	A base is a substance that neutralises an acid to form a salt and water. An alkali is a base that is soluble in water.	Acid and alkali ions	Acids produce hydrogen ions, H^{+}, alkalis produce hydroxide ions, OH^{-}
		Ions and neutralisation	The H^{+}ion and OH^{-}ion react together to form $\mathrm{H}_{2} \mathrm{O}$ (water).
alkalis	Sodium hydroxide, NaOH Potassium hydroxide, KOH Calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$	Producing a salt by neutralisation	The salt is produced from the ions left over once the H^{+}and OH^{-}ions have reacted together.
Reaction of alkalis with acids	```Acid + alkali }->\mathrm{ salt + water Eg: Sodium hydroxide nitric acid }->\mathrm{ sodium nitrate + water NaOH(aq) + HNO H2O(I)```	Burette	A tall glass tube with $0.1 \mathrm{~cm}^{3}$ markings on it and a tap at the bottom used for accurately adding variable amounts of liquid.
		Pipette	A piece of glassware used to very accurately measure a fixed amount of liquid.
Balancing	- Use a tally chart to keep track of the number of atoms on each side.		
	number of atoms on each side. - Change the coefficients (the big numbers) to add more of things that	Titration	A method used to find out exactly how much acid is needed to neutralise an alkali
	are missing. - DO NOT TOUCH the little numbers	Titration method	- Add alkali to beaker with apipette- Add an alkali to the beaker- Gradually add acid from aburette- Note how much has been addedat the point of neutralisation.
6. Core pr	practical - investigating neutralisation (CP9)		
pH meter	An instrument that can measure pH more accurately than universal indicator.		
		Titration indicators	Use indicators with a sharp colour change - such as phenolphthalein - rather than a gradual one such as universal.
CP9 - Aim	To see how the pH of an acid changes as you gradually add a base.		
CP9 - Setup	Place $50 \mathrm{~cm}^{3}$ of hydrochloric acid in a beaker and estimate its pH using a pH meter or universal indicator paper.		Burette
CP9 - Run the experiment	Add 0.3 g of calcium hydroxide powder, stir to dissolve and remeasure the pH . Repeat 7 more times.		- Hydrochloric Acid
CP9 - Graph your results	Plot a graph with mass of calcium on the x -axis and pH on the y -axis.	θ	- Tap
CP9 - Results	The pH will increase slowly at first, then very rapidly, then more slowly again.		Sodium Hydroxide containing phenolphthalein

