

Combined Science - Chemistry

configurations with full outer shells.

CC5-7 Knowledge organiser

С

0

0

н •× н 🌔 С 🔵 н

× н

C5-7: Bonding		Forming	Electrons are transferred from a	3. Properties of ionic compounds		4. Covalent bonding		
Sequence 1. Ionic bonding		ionic bonds	metal atom to a non-metal atom to form a positive metal cation and a negative metal anion. The	Melting point of ionic	High because energy to brea	melting needs a lot of ak strong ionic bonds.	Covalent bond	An electrostatic attraction between two atoms formed from a shared pair of electrons.
2. Ionic compounds		oppositely charged ions are attracted to each other.		compounds Solubility of ionic Many ionic water.		compounds dissolve in	Double / bond / Dot and /	A covalent bond involving two shared pairs of electrons.
3. Properties of ionic compounds		2. Ionic compounds						A bonding diagram showing the
 Covalent structures Allotropes of carbon 		Chemical formula	Shows the number of atoms of each element present in one	Electrical conductivity	ompounds Electrical Solid: Do not conduct because ions conductivity can't move.		diagram	atom, with electrons drawn as dots or crosses.
 7. Metallic bonding 8. Classifying materials 		Writing formulae	- Each chemical symbol starts with a capital letter.	of ionic Liquid (molten or solution): Do compounds conduct because ions can move.		Hydrogen, H2 Hydrogon	Two overlapping circles both labelled H. One pair in the overlap.	
Bond	1. Ionic bonding An attraction between two atoms		- The number of each atom present is shown with a subscript number after the symbol E g	How ionic compounds conduct	When they are positive cation negative elect	e in a liquid form, the ns move to the rode (cathode) and	chloride, HCl	and Cl. One pair in the overlap, 6 electrons around Cl.
lon	that holds them together. An atom or group of atoms that has	Determining	H ₂ SO ₄ .	electricity	the negative a positive electr	anions move the rode (anode).	Oxygen, O₂	Two overlapping circles both labelled O. Two pairs in the overlap 4 electrons around each O.
Charge	gained a charge by gaining or losing electrons. Whether an ion is positive or	ionic formulae	positive and negative chargesbalance.Change the number of each ion	The dots (●) a represent e differer	and crosses (x) electrons from nt atoms.	The circles represent electron shells.	Water, H ₂ O	Three overlapping circles in a line labelled H, O, H. A pair in each
Cation	negative. Positive ion formed by losing electrons. Formed by metal atoms.	Compound	present by changing the subscript numbers.	C		**	Carbon dioxide, CO ₂	Three overlapping circles in a line labelled O, C, O. Two pairs in each
Anion	Negative ion formed by gaining electrons. Formed by non-metal atoms.	ions Common compound ior	atoms that share a charge. Hydroxide: OH- Nitrate: NOa ⁻		Na		Methane, CH₄	overlap, 4 electrons around each O Five circles with one in the centre labelled C and 4 labelled H around i
Size of charge	The number of electrons transferred affects the size of charge: losing two electrons makes a 2+ charge		Sulfate: SO ₄ ²⁻ Sulfite: SO ₃ ²⁻	sodium a electronic cor	atom (Na): nfiguration 2.8.1 el	chlorine atom (Cl): electronic configuration 2.8.7	Valency	The number of covalent bonds an atom can form.
	gaining three electrons makes a 3- charge.	Including	Ammonium: NH ₄ ⁺		loses one electron	gains one electron	Valency and groups	Group $4 = 4$ (4 electrons needed) Group $5 = 3$ (3 electrons needed) Group $6 = 2$ (2 electrons needed)
How many electrons are given away or stolen?	Metals: give away however many electrons are in the outer shell Non-metals: steal however many electrons are needed to fill the outer shell.	compound io in formulae Ionic lattice	The structure of ionic compounds: a repeating 3D	Na			Working out molecular formulae	Group $7 = 1$ (1 electron needed) Find the lowest common multiple of the valency of each atom. Use the number of an atom required to
Electrostatic force	A force of attraction between a positive and negative particle.		and negative ions.		ion (Not):			reach the LCM.
Ionic bond	When two oppositely charged ions are held together by an electrostatic force.	6		electronic co	Both ions have stab	electronic configuration 2.8.8	н 火 н	

Na⁺ (a sodium ion) Cl⁻ (a chloride ion)

Combined Science - Chemistry

CC5-7 Knowledge organiser

5. Covalent structures		6. Allotropes of carbon			7. Metallic bonding	8. Bonding models		
Molecule	A particle made from two or	Allotrope	A different structural form of an	Structure of	A lattice of positive metal ions	Classifying	The properties of a material can	
	more atoms bonded together.		element made of the same atoms	metals	surrounded by a cloud of	materials	be used to determine the type of	
Simple molecular	A structure made of small		just bonded together differently.		delocalised electrons.		bonding in it.	
structure	molecules in which a few			Delocalised	Electrons that are not bound to a	Properties	High melting point, often soluble	
	atoms join together to form a	Carbon's	Graphite, diamond, graphene,	electrons	single atom but move freely	of ionic	in water, solid does not conduct	
	small particle.	allotropes	fullerenes		around many.	compounds	electricity, liquid/solution does.	
Structure of	Atoms in a molecule are held	Graphite	Structure: stacked sheets of	Metallic	The electrostatic attraction	Properties	Low melting point, does not	
molecular	together by strong covalent		carbon in a honeycomb pattern	bonding	between the lattice of positive	of simple	conduct electricity, sometimes	
substances	bonds. Neighbouring		with delocalised electrons		metal ions and the cloud of	molecular	soluble in water.	
	molecules are held close by		between them.		delocalised electrons.	compounds		
	weak intermolecular forces.		Properties: sheets slide apart	Electrical	Metals are good conductors	Properties	High melting point, does not	
Intermolecular	A weak electrostatic force that		easily, excellent conductor	conductivity	because the electrons are free to	of giant	conduct electricity (except	
force	holds two neighbouring		Uses: lubricants	of metals	move.	molecular	graphite), insoluble in water.	
	molecules together.	Diamond	Structure: Repeating pattern of 4	Comparing the	Metals with more electrons in the	compounds		
Melting point of	Low because melting only		atoms bonded to 4 others.	conductivity	outer shell – such as Al – are	Properties	High melting point, does conduct	
simple molecular	needs a little energy to break		Properties: Extremely hard.	of metals	better conductors than those with	of metallic	electricity, insoluble in water.	
compounds	weak intermolecular forces.	Current and a	Uses: Cutting tools and drills		fewer – such as Li – because there	Bonding	The ideas and drawings that we	
Electrical	Do not conduct because there	Grapnene	Structure: A single layer of atoms		are more delocalised electrons	Bonding	the ideas and drawings that we	
conductivity of	are no electrons that are free		In a noneycomb pattern.		that are able to move.	models	atoms	
simple molecular	to move.		conductor	Malleable	When a substance dents when it is	Brobloms	Dot and cross diagrams make	
Examples of	Hydrogon gas, oxygon gas		Lises: None vet, but notentially		hit instead of shattering.	with	electrons seem different they are	
examples of	Hydrogen gas, oxygen gas,		many	Malleability of	Metals are malleable because the	bonding	not	
substances	methane	Buckminster	Structure: Ball-shaped molecules	metals	atoms are arranged in regular	models	- Atoms appear stationary but are	
Giant molecular	A structure made of a	fullerene	of Co		sheets and these sheets can easily		actually vibrating	
structure	repeating pattern of atoms	Tunerene	Properties: Low melting point		slide over each other when hit.		- Atoms don't appear to be	
structure	covalently bonded together.		Uses: None				touching when they actually are.	
Melting point of	High because melting requires	Carbon	Structure: Cylinders made of	Melting point	High because melting them		Н	
giant molecular	breaking strong covalent	nanotubes	carbons bonded in a honeycomb	of metals	requires breaking the strong force		Ĩ	
compounds	bonds.		, pattern.		of motal ions and the cloud of		н—с_н	
Electrical	Do not conduct (except		Properties: Very strong, excellent		delocalised electrons	CH4	·	
conductivity of	graphite) because there are no		conductors		delocalised electrons.		H	
simple molecular	electrons free to move.		Uses: Strong and flexible	_		molecular	(stick bonds)	
compounds			materials, electronics.					
Examples of	Silicon dioxide (silica),			strong	(+) $(+)$ $(+)$ $(+)$ $(+)$		Х (н)	
simple molecular	diamond, graphite.			ovalent -		(н) с) (насан)	
substances				bonds +				
Polymer	A large molecule made of a					(н		
	small unit repeated many					full dot	and dot and cross	
	times.					cross dia	igram (outer shell only)	
Monomer	A small molecule that can be	forces			*/_/		Щ	
	joined together many times to	between		+	$-)^{-}(+)^{+}(+)(+)(+)$	H		
	form a polymer.	layers					н н с н	

0

B Metals consist of stacked layers of ions in a 'sea' of delocalised ('free') electrons.

H ball and stick