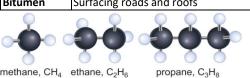
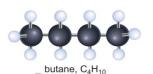


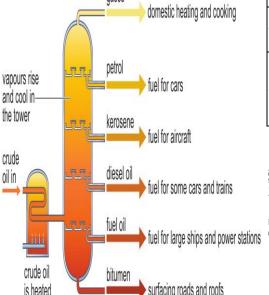
Combined Science - Chemistry

CC16-17 Knowledge organiser

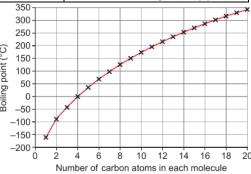

C16-17: Fuels and the atmosphere


Lesson sequence

- 1. Hydrocarbons
- 2. Fractional distillation of crude oil
- 3. The alkanes
- 4. Complete and incomplete combustion
- 5. Fuels and pollution
- 6. Cracking
- 7. The early atmosphere
- 8. The changing atmosphere
- 9. The atmosphere today
- 10. Climate change

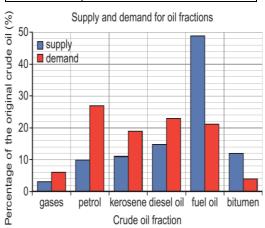

1. Hydrocarbons Hydrocarbon	
hydrogen and carbon.	-
	e of a
Crude oil A thick brown liquid made	of a
1	
mixture of many different	
hydrocarbons found in de	posits
underground.	
Molecules in Hydrocarbons in many dif	ferent
crude oil forms with carbons joined	I
together into both chain-	and ring-
shaped molecules.	
Properties of Most of the hydrocarbons	in crude
hydrocarbons oil are liquids, but each of	them
in crude oil has a different boiling poi	nt.
Hydrocarbons Mostly alkanes.	
in crude oil	
Uses of crude Fuel, feedstock (supply of	basic
oil chemicals) for the chemic	al
industry.	
Crude oil as a There is a limited amount	: at some
finite resource point it will run out.	
Non- A resource that will event	ually run
renewable out.	

2. Frac	2. Fractional distillation of crude oil	
Fractional	A type of distillation used to	
distillation	separate mixtures of two or more	
	liquids.	
Separation in	Fractional distillation separate	
fractional	compounds according to their	
distillation	boiling point.	
Heating	Crude oil is passed through a heater	
crude oil	to heat it to about 400°C so that	
	nearly everything is a gas.	
Separating	The hot gases rise up the	
crude oil in a	fractionating column until cool	
fractionating	enough to condense.	
column		
Fractions of	The separated liquids and gases	
crude oil	collected at different temperatures.	
	The main ones are gases, petrol,	
	kerosene, diesel oil, fuel oil, and	
	bitumen.	
Fractions in	Gases, petrol, kerosene, diesel, fuel	
order	oil, bitumen:	
	- Smallest to biggest molecules	
	- Lowest to highest boiling point	
	- Lowest to highest viscosity	
	- Easiest to hardest ignition	
Viscosity	How easily a fluid flows – higher	
	viscosity = runnier.	
Ease of	How easily a substance catches fire.	
ignition		
Gases	Used for domestic heating and	
	cooking.	
Petrol	Used as a fuel for cars.	
Kerosene	Fuel for aircraft	
Diesel oil	Fuel for larger vehicles such as	
	lorries and trains	
Fuel oil	Fuel for ships and power stations	
Bitumen	Surfacing roads and roofs	
9		



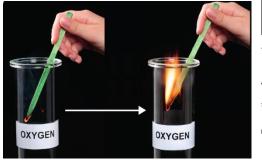
	3. The alkanes	
	Homologous	A family of closely related
	series	compounds with molecular
		formulae that differ only in the
1		number of 'CH ₂ 's.
	Physical	Vary gradually, for example the
	properties in	boiling point gradually increases.
	a homologous	
	series	
1	Chemical	Very similar with a gradual
	properties in	variation.
	a homologous	
	series	
	General	Describes the number of each
	formula	atom in any member of a
		homologous series.
	Alkanes	Hydrocarbons containing only
		single bonds. The names end with
		'-ane'.
	First three	Methane – CH ₄
	alkanes	Ethane – C₂H ₆
		Propane – C₃H ₈
	General	C_nH_{2n+2}
	formula of	
	alkanes	

4. Complete and incomplete combustion	
Combustion	When a compound reacts with
	oxygen producing a flame.
Complete	Combustion that produces only
combustion	water and carbon dioxide and
	releases the most possible energy.
Complete	Fuel + oxygen →
combustion	carbon dioxide + water
equation	E.g: Ethane + oxygen →
	carbon dioxide + water
	$2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$
Incomplete	Combustion that produces a mixture
combustion	of carbon dioxide, carbon monoxide,
	carbon and water and produces less
	energy.
Why	When there is not enough oxygen
incomplete	for all of the reactants to be fully
combustion	oxidised.
happens	
Carbon	CO. A colourless odourless a highly
monoxide	toxic gas.
How carbon	It sticks to haemoglobin in the blood
monoxide	which prevents it from carrying
kills	oxygen.
Soot	The small particles of carbon
	produced by incomplete
	combustion.
Problems	- Causes lung problems when
with soot	breathed in.
	- Blackens and dirties buildings
Preventing	It is important that boilers at home
incomplete	have a good air supply to prevent
combustion	incomplete combustion. For this
	reason, a boiler's flue pipe should be
250	checked for blockages every year.

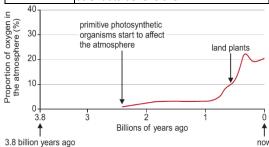

Combined Science - Chemistry

CC16-17 Knowledge organiser

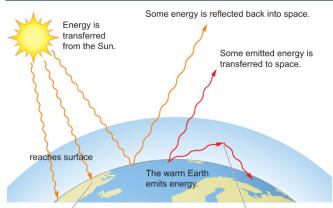
5. Combustible fuels and pollution		
Sulfur	An impurity that is naturally present in	
	small amounts in oil and coal.	
Sulfur	SO ₂ . A gas formed from the sulfur in	
dioxide	oil and coal when it is burnt.	
Acid rain	Rain with a pH lower than 5.2	
Formation	Sulfur dioxide dissolves in water in	
of acid	clouds to form sulfurous acid (H ₂ SO ₃)	
rain	which oxidises to become sulfuric acid	
	(H ₂ SO ₄)	
Effects of	- Soil becomes too acidic for crops and	
acid rain	plants to grow well	
	- Acid in rivers and lakes prevents fish	
	eggs from hatching and kills some	
	insects.	
	- Acid rain increases corrosion of	
	limestone which damages buildings	
	and statues	
Nitrogen	NO _x . Various gases formed at high	
oxides	temperatures inside internal	
	combustion engines.	
Problems	- Dissolves in clouds forming acid rain	
of	- NO ₂ causes lung damage	
nitrogen	- NO _x can cause smog to form	
oxides		


to pump
U-shaped tube
iced water
limewater

	6. Cracking
Cracking	Breaking down longer less useful
	hydrocarbons into shorter more
	useful ones.
How to crack	Heat the hydrocarbons and pass
hydrocarbons	the vapours over an aluminium
<u> </u>	oxide catalyst heated to 650°C.
Products of	An alkane and an alkene.
cracking an alkane	E.g:
alkane	Hexane → butane + ethene
	$C_6H_{14} \rightarrow C_4H_{10} + C_2H_4$
Alkene	A hydrocarbon containing a C=C
	double bond.
Usefulness of	There is more demand for shorter
cracking	hydrocarbons – such as petrol and
	gas – than longer ones such as
	bitumen. Cracking turns the less
	useful ones into more useful ones.
Hydrogen gas	H ₂ . Hydrogen has the potential to
as a fuel	be used as a fuel for cars.
Advantages of	- It only produces H₂O when burnt
hydrogen as a	so does not directly contribute to
fuel	global warming
	- It can be produced using
	renewable energy
Disadvantages	, ·
of hydrogen	in ways that also produce CO ₂
as a fuel	which contributes to global
	warming
	- It is difficult to store

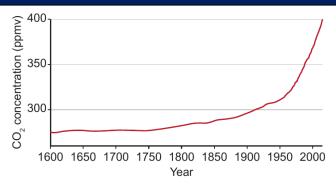


7. The early atmosphere	
The early	4.5-3.5 billion years ago the Earth
Earth	was extremely hot and there were
	many volcanoes.
The early	Little or no oxygen, a lot of carbon
atmosphere	dioxide, water vapour, small
	amounts of other gases such as
	nitrogen.
Origin of	Gases from volcanoes.
the early	
atmosphere	
Evidence for	The oldest rocks on Earth contain
a lack of	compounds such as iron pyrite that
oxygen	cannot form in the presence of
	oxygen.
Formation	As the Earth cooled, water vapour in
of the	the air condensed to liquid water,
oceans	forming the oceans.

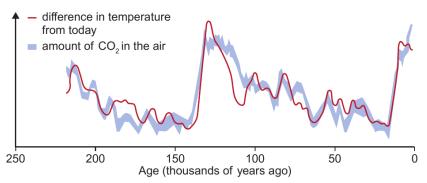

8. Th	e changing atmosphere
Changes to the	The amount of carbon dioxide
atmosphere	decreased, water vapour
	decreased, oxygen increased.
Photosynthesis	Photosynthesis – by
and the	cyanobacteria and plants –
atmosphere	consumes carbon dioxide
	(decreasing it) and produces
	oxygen (increasing it).
Oceans and	Carbon dioxide dissolves in the
carbon dioxide	ocean and is used by sea
	creatures to make their shells,
	enabling even more CO₂ to
	dissolve.
Test for oxygen	A glowing splint (stick) placed in
	oxygen will relight.

	9. Global warming	
Greenhouse Infrared radiation (heat) from the sun		
effect	travels through the atmosphere and	
enect	warms the ground. The ground re-	
	emits slightly different infrared	
	<i>,</i>	
	radiation that is not able to pass back	
	through the atmosphere and is	
	trapped by gases called greenhouse	
	gases.	
Greenhouse	Gases that trap re-emitted infrared	
gases	radiation – including carbon dioxide,	
	methane and water vapour.	
Importance	The greenhouse effect is extremely	
of the	important; without it the average	
greenhouse	global temperature would be 32 °C	
effect	lower and most life could not exist.	
Increased	Human activities are increasing the	
greenhouse	concentration of greenhouse gases	
effect	such as carbon dioxide and methane,	
	meaning the greenhouse effect is	
	strong and traps more heat.	
Global	An increase in global temperatures	
warming	caused by the increased greenhouse	
	effect.	
Climate	Change in global weather patterns	
change	caused by global warming.	
Correlation	In Earth's history, every time CO ₂	
between	concentrations have been high, the	
carbon	temperature has also been high. This	
dioxide and	makes scientists think that the current	
temperature	increase in CO ₂ is what is increasing	
	the temperature.	
Uncertainty	Scientists measurements of past	
in the data	temperature and CO ₂ are not perfect	
	which makes some people doubt	
	them. However, many different sets of	
	data say very similar things, so most	
	scientists believe them.	
_ 40		

Combined Science - Chemistry



Most of the energy is absorbed, causing an increase in temperature.


Some emitted energy is absorbed by greenhouse gases. When it is re-emitted it can be transferred back to the Earth's surface.

A The greenhouse effect keeps the Earth warm.

10	. Impact of climate change
Two main causes of climate change Effects of climate change	- Carbon dioxide produced by burning fossil fuels - Methane produced by farming (especially cows) - Rising average global temperature - Increased sea level from melting ice - Increased drought in some areas and flooding in others - Increase in dangerous weather
Effect of climate change on life	Living organisms are adapted to the conditions where they live. If these conditions change they may struggle to survive. Climate change is causing many species to struggle and some to go extinct.
Ocean acidification	The carbon dioxide we produce dissolves in the oceans, lowering the pH making it harder for many seacreatures to build their shells.
Limiting climate change	 Reduce emissions of greenhouse gases by using renewable energy and eating less meat. Geoengineering – perhaps placing giant mirrors in space to reflect some of the sun's heat.

B CO₂ levels have risen dramatically since about 1850.

C Average global temperatures and atmospheric carbon dioxide levels are correlated. D Gases are trapped in ice cores.

A Methane being released and burnt off on an oil rig.

C If coral remain 'bleached' for too long they can die.