

## Combined Science - Chemistry

CC13-15 Knowledge organiser

| C13 to C15: Groups, rates and heat |                                       | 2. Group 7                                                      |                                                          | 3. Reactivity of halogens                           |                                                   | 4. Group 0                                                      |                                               |
|------------------------------------|---------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|
|                                    | changes                               | Halogens                                                        | The names given to the non-metals in                     | Group 7                                             | Reactivity increases as you go up                 | Noble                                                           | The name given to the non-metals in           |
|                                    |                                       |                                                                 | group 7 – fluorine, chiorine, bromine                    | reactivity                                          | the group.                                        | gases                                                           | group 0 – helium, neon, argon, krypton        |
| Lesson sequence                    |                                       | Chloring                                                        |                                                          | Explaining                                          | when non-metals react they                        |                                                                 | and xenon.                                    |
| 1. Grour                           | · 1                                   | Bromino                                                         | Cl <sub>2</sub> - A pale green gas.                      | group 7<br>reactivity                               | Eurther up the group the elements                 | Melting                                                         | They are all gases at room temperature        |
| 2 Group                            | 7                                     | Indino                                                          | L A shiny nurnla black solid                             | reactivity                                          | have fewer shells so the nucleus                  | point of                                                        | but the melting and boiling point             |
| 2. Gloup /                         |                                       | Reaction                                                        | Halogen + metal $\rightarrow$ metal halide               |                                                     | attracts electrons more strongly.                 | noble                                                           | increase down the group.                      |
| 3. Reactivity of nalogens          |                                       | of                                                              | F g <sup>.</sup>                                         | Displacement                                        | Reactions in which a more reactive                | gases                                                           |                                               |
| 4. Group                           |                                       | halogens                                                        | Bromine + sodium $\rightarrow$ sodium bromide            | reactions                                           | metal displaces a less reactive                   | Reactivity                                                      | The noble gases do not (easily) do any        |
| 5. Rates                           | of reaction                           | with Br <sub>2</sub> + 2Na → 2NaBr metals                       |                                                          |                                                     | metal from a salt eg:<br>copper sulfate + zinc -> | of group 0                                                      | reactions – they are inert.                   |
| 6. Collisi                         | on theory                             |                                                                 |                                                          |                                                     |                                                   | Explaining                                                      | When elements react they try to               |
| 7. Core p                          | ractical – rates of reaction (CP11)   | Reaction                                                        | Halogen + hydrogen →                                     |                                                     | zinc sulfate + copper                             | reactivity                                                      | complete their outer shells. Because          |
| 8. Cataly                          | /sts                                  | of                                                              | hydrogen halide                                          |                                                     | Does not work backwards as                        | or group o                                                      | complete they do not react                    |
| 9. Exothe                          | ermic and endothermic reactions       | halogens                                                        | E.g: Chlorine + hydrogen →                               | Dian la como ont                                    | copper is less reactive than zinc.                | 11                                                              |                                               |
| 10. Explai                         | ning energy changes                   | with                                                            | hydrogen chloride                                        | Displacement                                        | A more reactive halogen displaces                 | Uses of                                                         | -Hellum is used in airships because it is     |
| -                                  |                                       | hydrogen                                                        | $Cl_2 + H_2 \rightarrow 2HCl$                            | halogens                                            | its electrons                                     | gases                                                           | - Argon is used in fire extinguishers         |
|                                    | 1. Group 1                            | Hydrogen                                                        | Hydrogen halides dissolve in water to                    | nulogens                                            | E g: bromine + sodium iodide $\rightarrow$        | 50303                                                           | because it is inert and denser than air.      |
| Alkali metals                      | The name of the metals in group 1 –   | halides                                                         | form acids, for example hydrogen                         |                                                     | iodine + sodium bromide                           |                                                                 | - Neon is used in lighting because it         |
| Group 1                            | litnium, sodium, potassium etc.       |                                                                 | chloride makes hydrochloric acid.                        | Redox                                               | The more reactive halogen oxidises                |                                                                 | glows red when electricity is passed          |
| symbols                            | Na – sodium                           | Chlorine                                                        | Chlorine gas turns damp blue litmus                      | reactions of                                        | the less reactive halide by taking                |                                                                 | through it.                                   |
| Symbols                            | K – potassium                         | test                                                            | red then quickly bleaches it white.                      | halogens                                            | its electrons. The more reactive                  |                                                                 |                                               |
| Reaction of                        | Metal + water $\rightarrow$           |                                                                 |                                                          |                                                     | halogen is reduced.                               |                                                                 |                                               |
| alkali metals                      | metal hydroxide + hydrogen            |                                                                 |                                                          |                                                     | E.g: $Br_2 + 2I^- \rightarrow 2Br^- + I_2$        |                                                                 | iodine                                        |
| with water                         |                                       |                                                                 |                                                          | potassium                                           |                                                   |                                                                 | 2.8.18.18.7                                   |
|                                    | E.g: sodium + water →                 |                                                                 | sodium                                                   | 2.0.0.1                                             |                                                   | bromine                                                         |                                               |
|                                    | sodium hydroxide + hydrogen           |                                                                 | 2.8.1                                                    |                                                     | chloring                                          | 2.8.18.7                                                        |                                               |
|                                    | $2Na + 2H_2O \rightarrow 2NaOH + H_2$ | lithium                                                         |                                                          |                                                     |                                                   |                                                                 |                                               |
| Lithium and                        | Lithium floats and bubble vigorously  | 2.1                                                             |                                                          | ( <b>f</b> f (к)                                    |                                                   |                                                                 |                                               |
| Water                              | Cadium maltainta a hall and mayor     |                                                                 | ( 🍷 ( Na ) 🝷 )                                           |                                                     |                                                   |                                                                 |                                               |
| Sodium and                         | around the surface bubbling           | ( ( Li                                                          |                                                          |                                                     |                                                   |                                                                 |                                               |
| Water                              | vigorously.                           | $\langle \bigcirc$                                              |                                                          |                                                     |                                                   |                                                                 |                                               |
| Potassium                          | Potassium melts into a ball, catches  | $\downarrow i \rightarrow \downarrow i^{+}$                     | $He^-$ Na $\rightarrow$ Na <sup>+</sup> + e <sup>-</sup> | $K \rightarrow K^+ + e$                             |                                                   |                                                                 |                                               |
| and water                          | fire (lilac) and moves around the     |                                                                 |                                                          |                                                     | $CI + e^- \rightarrow CI^-$                       | Br + e                                                          | $e^- \rightarrow Br^   + e^- \rightarrow  ^-$ |
|                                    | surface bubbling vigorously.          | <b>D</b> As the distance between the outer electron and the nuc |                                                          | eus increases, the alkali <b>D</b> Going down group |                                                   | p 7, the outermost electron shell gets further from the nucleus |                                               |
| Group 1                            | Reactivity increases as you move      | metais get II                                                   |                                                          |                                                     | and the ions are less                             | s readily formed                                                | 1.                                            |
| reactivity                         | down the group.                       |                                                                 | argon 2.8.8                                              |                                                     |                                                   |                                                                 |                                               |
| Explaining                         | When metals react they lose their     | helium                                                          | 2.8                                                      |                                                     |                                                   |                                                                 |                                               |
| group 1                            | outer electrons. Further down the     | 2                                                               |                                                          |                                                     |                                                   |                                                                 |                                               |
| reactivity                         | group there are more shells of        | (He)                                                            |                                                          |                                                     |                                                   |                                                                 |                                               |
|                                    | electrons so the outer electrons are  |                                                                 |                                                          |                                                     |                                                   |                                                                 |                                               |

**F** Noble gases do not react as they already have a complete outer shell of electrons.

-

less attracted to the nucleus and

easier to remove.



## Combined Science - Chemistry

CC13-15 Knowledge organiser

|                             | E Dates of reaction                                   | 6. Collision theory      |                                    | 7 Core practical rates of reaction (CD11)    |                                              | 9. Catalust       |                                                  |
|-----------------------------|-------------------------------------------------------|--------------------------|------------------------------------|----------------------------------------------|----------------------------------------------|-------------------|--------------------------------------------------|
| 5. Rates of reaction        |                                                       | 6. Collision theory      |                                    | 7. Core practical – rates of reaction (CP11) |                                              | 8. Catalyst       |                                                  |
| Rate of                     | The rate at which reactants are used                  | Collision                | States that for two particles to   | CP11 – Alm                                   | To explore the rate of two                   | Catalyst          | A substance that speeds up a chemical            |
| reaction                    | up or products are made.                              | theory                   | react they must:                   |                                              | reactions by collecting gas and              |                   | reaction without being used up.                  |
| Reactants                   | Starts high and curves downward,                      |                          | - Collide with each other          |                                              | observing a colour change.                   | Effect of         | Catalysts increase the rate of reaction          |
| vs time                     | decreasing rapidly at first and then                  |                          | - Collide with enough energy to    | CP11 – Gas                                   | Place a measuring cylinder full of           | catalysts on      | by reducing the activation energy so             |
| graph                       | more gently. Steeper line = faster                    |                          | react                              | collection –                                 | water upside down in a basin of              | rate              | that a greater proportion of collisions          |
|                             | rate.                                                 | Activation               | The minimum energy that two        | setup                                        | water. Place 5 g of marble chips             |                   | lead to reactions.                               |
| Products                    | Starts low and curves upwards,                        | energy                   | particles must have when they      |                                              | in a conical flask with 40 cm <sup>3</sup>   | Reaction          | A graph that shows the changes in                |
| vs time                     | increasing rapidly at first and then                  |                          | collide in order to react.         |                                              | hydrochloric acid. Insert a bung             | profile           | energy during a reaction. Starts with            |
| graph                       | more gently. Steeper line = faster                    | Effect of                | Increasing the concentration       |                                              | with delivery tube and insert the            |                   | large 'hump' that represents the                 |
|                             | rate.                                                 | concentration            | increases the rate because there   |                                              | delivery tube into the measuring             |                   | activation energy.                               |
| Measuring                   | <ul> <li>Collect gas in a gas syringe and</li> </ul>  | on rate                  | are more particles so there are    |                                              | cylinder.                                    | Effect of         | The 'hump' representing the activation           |
| rates –                     | measure the volume every 30 secs.                     |                          | more collisions and more           | CP11 – Gas                                   | Record the volume of gas                     | catalysts on      | energy is smaller.                               |
| reactions                   | <ul> <li>Collect gas over water (up-turned</li> </ul> |                          | reactions.                         | collection –                                 | collected every 15 seconds until it          | reaction          |                                                  |
| that                        | measuring cylinder full of water) and                 | Effect of                | Increasing the surface area (by    | measurements                                 | stops.                                       | profiles          |                                                  |
| produce                     | measure volume every 30 secs.                         | surface area             | decreasing particle sizes) in      | CP11 – Gas                                   | Repeat with a different size of              | Enzyme            | A protein that works as a catalyst to            |
| gas                         | - Do reaction on a balance and record                 | on rate                  | creases the rate by exposing more  | collection –                                 | marble chips.                                |                   | speed up the reactions in our cells.             |
|                             | the change in mass every 30 secs.                     |                          | particles to collisions leading to | variations                                   |                                              | Enzymes in        | Alcoholic drinks are produced using              |
| Measuring                   | Do the reaction in a beaker placed on                 |                          | more collisions and more           | CP11 – Gas                                   | The amount of gas collected                  | alcohol           | enzymes found in yeast which catalyse            |
| rates –                     | piece of paper with a cross marked on                 |                          | reactions.                         | collection –                                 | increases quickly at first and then          | production        | a reaction that turns glucose into               |
| reactions                   | it. Looking down through the beaker,                  | Effect of                | Increasing the pressure increases  | results                                      | more slowly. The smaller marble              |                   | ethanol.                                         |
| that go                     | time how it takes for the cross to                    | pressure on              | the rate because particles are     |                                              | chips produce gas more quickly,              | 1                 |                                                  |
| cloudy                      | disappear.                                            | rate                     | pushed closer together so they     |                                              | but the same amount in total.                |                   |                                                  |
|                             |                                                       |                          | collide more often.                | CP11 – Colour                                | Draw a cross on a piece of paper             |                   |                                                  |
| C                           |                                                       | Effect of                | Increasing the temperature         | change – setup                               | and place a beaker on it. Measure            |                   | without catalyst                                 |
|                             |                                                       | temperature              | increases the rate because         |                                              | out 50 cm <sup>3</sup> of sodium thiosulfate | † I               |                                                  |
|                             |                                                       | on rate                  | particles move faster so they      |                                              | solution and 5 cm <sup>3</sup> of            |                   | activation energies                              |
|                             |                                                       |                          | collide more and collide with      |                                              | hydrochloric acid into two test              | lag               |                                                  |
|                             | and ovringe                                           |                          | more energy to a greater           |                                              | tubes and leave to warm in a                 | Ene               |                                                  |
|                             | gas synnge                                            |                          | proportion of collisions lead to   |                                              | water bath at 30ºC.                          | energy of         | overall energy change                            |
|                             | dilute sulfuric acid                                  |                          | reactions                          | CP11 – Colour                                | Quickly pour both test tubes into            | reactants         | with catalyst                                    |
|                             |                                                       |                          |                                    | change – run                                 | the beaker, mix and start the                |                   | energy of products                               |
|                             | magnesium                                             | 0                        | cotton wool to                     | the experiment                               | stopwatch. Looking down                      |                   | Progress of reaction                             |
| Cart #                      |                                                       |                          | stop acid 'spray'                  |                                              | through the beaker, stop when                | C This reaction a | -                                                |
| <b>A</b>                    |                                                       | 4                        | escaping                           |                                              | you can no longer see the cross.             |                   | nome shows that a catalyst lowers the activation |
|                             | The mean activity                                     | //                       |                                    | CP11 – Colour                                | Repeat with water baths set to               | energy.           |                                                  |
| 3)                          | arapules react faster                                 |                          |                                    | change –                                     | 35°C, 40°C, 45°C and 50°C.                   |                   |                                                  |
| C                           | granues react laster.                                 |                          | dilute                             | variations                                   |                                              |                   |                                                  |
| <sup>j</sup> o <sup>j</sup> |                                                       |                          | hydrochloric                       | CP11 – Colour                                | The cross disappears most quickly            |                   |                                                  |
|                             |                                                       | marbla                   | acid                               | change –                                     | at 50°C and least quickly at 30°C.           |                   |                                                  |
| glu                         |                                                       | chips                    |                                    | results                                      |                                              |                   |                                                  |
| >ŭ                          |                                                       |                          | balance                            |                                              |                                              |                   |                                                  |
| as                          | The magnesium                                         |                          |                                    |                                              |                                              |                   |                                                  |
| Ö                           | ribbon reacts slower.                                 |                          |                                    |                                              |                                              |                   |                                                  |
|                             |                                                       |                          |                                    |                                              |                                              |                   |                                                  |
| -                           |                                                       | <b>D</b> As the reaction | n proceeds, the mass of            |                                              |                                              |                   |                                                  |
|                             | rime (s)                                              | the flask and cor        | ntents will decrease               |                                              |                                              |                   |                                                  |

the flask and contents will decrease.



## **Combined Science - Chemistry**

CC13-15 Knowledge organiser

**Bond** energy

(kJ mol<sup>-1</sup>)

358

413

436

464

498

805

 $= 4 \times 413$ 

= 2 × 498

= 2 × 805

= 4 × 464

reactions have a positive sign).

= 1652 kJ mol<sup>-1</sup>

= 996 kl mol<sup>-1</sup>

= 1610 kJ mol<sup>-1</sup>

= 1856 kJ mol<sup>-1</sup>

= 1652 + 996 = 2648 kJ mol<sup>-1</sup>

= 1610 + 1856 = 3466 kJ mol<sup>-1</sup>

= 2648 - 3466 = -818 kJ mol<sup>-1</sup>

The negative sign shows that the reaction is exothermic (endothermic



**B** The activation energy is the difference in energy between the reactants and the top of the 'hump'.