

Combined Science - Chemistry

CC10-12 Knowledge organiser

C10-12: Electrolysis, metals and		2. Half-equations (HT)		4. Core practical – electrolysis of copper sulfate			5. Reactivity	
reversible reactions		Half- A	In equation that shows what		solution (CP10)		Reactivity	Potassium, sodium, calcium,
Teversible reactions		equations h	appens to just one of the ions during	CP10 - aim	To see how the changi	ng the current	series (most to	magnesium, aluminium, zinc, iron,
Sequence		c	hemical reaction. Two half-		affects the rate of elec	trolysis.	least)	copper, silver, gold.
1 Electrolysis		e	quations combine to give the overall	СР10 —	Clean two copper elect	trodes, label	Forming	The more reactive metals more
2 Half equations (HT)		ic	onic equation	Prepare	one anode and one cat	hode, weigh	cations	easily lose electrons to form cations.
2. Hall-equations (HT)		Half- S	how electron transfer:	electrodes	each and record mass.		Reaction with	Metal + water ᢣ metal hydroxide +
3. Products of electrolysis		equations C	Cathode (reduction):	СР10 -	Connect a variable resi	stor to the	cold water	hydrogen
4. Core pr	actical – electrolysis of	in	M⁺ + e⁻ → M	Setup	negative terminal of a	power supply	(H₂O(I))	
copper sulfate solution (CP10)		electrolysis A	node (oxidation):		then connect this to th	e cathode.		 Potassium – violently
5 Reactivity			$X^- \rightarrow X + e^-$		Connect an ammeter t	o the positive		- Sodium – very quickly
6 Displacement reactions		Electrons in C	Electrons in Cations will gain the same number of		terminal then connect this to the			- Calcium – slowly
7. Extracting motols from their eres		half e	electrons as their charge. Anions will		anode. Place both elec	ce both electrodes in a		Metal + water \rightarrow metal oxide +
7. Extracting metals from their ores		equations lo	ose the same number of electrons as		beaker of copper sulfa	te solution	with steam	hydrogen
8. Oxidati	on and reduction	tl	heir charge.	CP10 – Run	Switch the power supp	ly on, adjust	(H ₂ O(g))	Magnesium, zinc, iron
9. Life-cycle assessment and recycling		Non-metals N	Nost non-metals will form molecules:	the	the variable resistor so	the ammeter	No reaction	Copper, silver, gold
10. Dynami	ic equilibrium	in half- C	D_2 , F_2 , CI_2 , Br_2 , I_2 etc – you will need	experiment	reads 0.2 A and leave f	or 20 minutes.	with water or	
11 Changes to equilibrium systems (HT)		equations to	wo of them in the half-equation.	СР10 –	Carefully remove each	electrode,	steam	
		2 Products of electrolysis		Record	rinse them with water	and then with	Reaction with	Metal + acid 🗲 salt + hydrogen
	1. Electrolysis	J. Discharged	When an ion loses its charge to	results	propanone. Re-weigh	each and	acid	
Electrolysis	Using direct current to break	Dischargeu	hecome an atom		record.			Sodium, potassium – violent
,	compounds down into their	Electrolysis of	Cathode: metal	СР10 —	Repeat the experiment	t with a		calcium, magnesium, zinc, iron –
	elements.	molten salts	Anode: non-metal	Variations	current of 0.3 A, 0.4 A	and 0.5 A.		Sleduy Conner silver gold no reastion
Electrolyte	Liquid used for electrolysis	lons in salt	Metal non-metal and H ⁺ and OH ⁻	СР10 -	The anode loses mass	whilst the		copper, silver, gold – no reaction
,	because ions can move – either	solutions	because water partially ionises.	Results	cathode gains mass. Th	ne higher the	6. D	isplacement reactions
	molten or dissolved ionic	Hydrogen	$2H^+(g) + 2e^- \rightarrow H_2(g)$		current the greater the	e mass change.	Displacement	Reactions in which a more
	compounds	half-equation					reactions	reactive metal displaces a less
Electrolysis of	Does not work as ions can't move.	Electrolysis of	Metal. unless reactive metal such	n	otassium most reactiv	o K		reactive metal from a salt eg:
solids		, salt solutions	as K, Na, Li, Mg, Ca in which case	P.	sodium	Na		copper sulfate + zinc \rightarrow
Electrodes	Conducting rods placed in	- cathode	hydrogen.		calcium	Ca		zinc sulfate + copper
	electrolyte, connected to power	Electrolysis of	Non-metal, unless sulphate salt in	ma	gnesium	Mø		Does not work backwards as
	supply.	salt solutions	which case oxygen.	al	uminium	AI		copper is less reactive than zinc.
Cathode	Negative electrode where cations	- anode			carbon	C	Redox reactions	Reactions in which an oxidation
	(+) are discharged.	Electrolysis of	Cathode: hydrogen		zinc	Zn		and reduction happen at the
Anode	Positive electrode where anions (-	sulfuric acid	Anode: oxygen		iron	Fe		same time, such as
) are discharged.	Purifying	Anode: impure copper		tin	Sn		displacement reactions.
OIL	Oxidation Is Loss of electrons (OIL)	copper -	Cathode: pure copper		lead	Pb	Redox during	The more reactive metal is
		setup	Electrolyte: copper sulfate solution	ł	nydrogen	н	aisplacement	oxidised, eg:
RIG	Reduction Is Gain of electrons	Purifying	Copper atoms leave the anode		copper	Cu		$2n \rightarrow 2n^{2+} + 2e^{-}$
	(RIG)	copper -	(Cu \rightarrow Cu ²⁺ + 2e ⁻), travel through		silver	Ag		i ne less reactive metal is
AnOx	Anode is for oxidation	explanation	solution to the cathode		gold 🗸 🔻	Au		reduced, eg:
CaRe	<u>Ca</u> thode is for <u>re</u> duction		(Cu ²⁺ +2e ⁻ \rightarrow Cu). Impure atoms on		platinum least reactiv	e Pt	Chastator is a	
			the anode fall to the bottom as				speciator ion	during a chomical reaction
		1	Isludge.					uuring a chemical feaction.

Combined Science - Chemistry

10. Dynamic equilibrium

CC10-12 Knowledge organiser

7. Ex	tracti	ing metals from	their ores	1		8. O	xidation and reduction	
Native state		When metals are found in their			Oxidation G		ning oxygen	
		pure form, e.g. silver and gold.			Reduction Los		ing oxygen	
Ore		Rock containing	enough of a		Redox V		en reduction and oxidat	
		metal compound to extract for				read	ctions happen together.	
		profit. Normally	oxides or		Reduction	Iror	produced from iron ox	
		sulphides of the metal.			of iron	heating with carbon:		
Extracting		For extracting less reactive					iron oxide + carbon	
metals by		metals such as zinc, iron,					carbon dioxide + ir	
, heating with		copper. Works because carbon				Iror	is reduced, carbon is o	
carbon		is more reactive, e.g.:			Reduction	Aluminium is produced fro		
		iron oxide + carbon $ ightarrow$			of	aluminium oxide by electr		
		carbon dioxide + iron			aluminium	Aluminium oxide		
Extracting		Done with meta	ls more reactive		ore		aluminium + oxyg	
metals by		than carbon e.g.	. potassium,			Alu	minium is reduced, oxy	
electrolysis		sodium, calcium	i, magnesium,			oxic	dised	
		aluminium, e.g.:	.: Corrosion			Wh	en metals slowly react v	
		Aluminium oxide $ ightarrow$				oxy	gen, making them weak	
		aluminiur	n + oxygen		Rates of	Mo	re reactive metals corro	
Bioextraction		Using living organisms to extract			corrosion	auickly.		
		metals.			Tarnish	Tarnish A protective laver of		
Bioleaching		Growing bacteria on poor			th		lavers below from corre	
		quality copper ore. The bacteria						
		produce a solution of copper sulfate from which copper can			9. Life-cy		cle assessment and recy	
					Recycling		Converting old waste m	
		be extracted by electrolysis.					new metal that can be	
Phytoextrac	tion	Plants are grown that absorb			Advantages	of	 Natural reserves last l 	
		metal ions as th	ey grow. The		recycling		- Less pollution from m	
		plants are then	burnt to produce	nt to produce			 Less pollution from pr 	
		ash rich in meta	l compounds.				 Less waste in landfill 	
				_			 Often less energy use 	
Process Adva		ntages	Disadvantages	Disadvanta		ges	 Can be expensive 	
both	no ha	rmful gases (e.g. sulfur	very slow		of recycling		 Can use a lot of energ 	
bioleaching and	dioxic	le) are produced					transporting, collecting	
phytoextraction	cause	s less damage to the			Life-cycle		Looks at environmenta	
	landscape than mining				assessment	:	all stages of a product's	
	conse	rves supplies of higher			(LCA)		We should aim to redu	
	grade ores						damage.	
bioleaching	does	not require high	toxic substances and sulfuric acid can		LCA stages		 Obtaining and process 	
	temp	eratures					materials	
			be produced by the				 Making/packaging the 	
			process, and damage the environment				 Using the product 	
							 Disposal or recycling of 	
phytoextraction	can extract metals from contaminated soils		more expensive than					
			mining some ores growing plants					
			is dependent on					

weather conditions

xygen	Reversible	Reactions that can go forwards a			
ygen	reaction	well as backwards (with product			
luction and oxidation		turning back into reactants)			
happen together.	4	Used to show reversible reaction			
uced from iron oxide by	Dynamic	The point at which the rate of th			
vith carbon:	equilibrium	forwards reaction and backward			
ron oxide + carbon 🔿		reaction are equal, so the			
arbon dioxide + iron		concentrations of reactants and			
luced, carbon is oxidised.		products stops changing.			
n is produced from	Closed	Nothing can escape, so dynamic			
n oxide by electrolysis:	systems	equilibrium can be reached.			
Aluminium oxide ᢣ	Open systems	Gases can escape so dynamic			
aluminium + oxygen		equilibrium can't be reached.			
m is reduced, oxygen is	Equation for	Nitrogen + hydrogen ≒ ammor			
	making	$N_2 + 3H_2 \rightleftharpoons 2NH_3$			
tals slowly react with	ammonia	Exothermic \leftrightarrows Endothermic			
naking them weaker.	Haber process	For making ammonia industrially			
ctive metals corrode more	-	- 200 atm pressure – equilibrium			
		shifts right, yield increases			
ive layer of oxide that stops		- 450°C – equilibrium shifts left,			
below from corroding.		lower yield but MUCH faster			
ecoment and reauding		reaction			
essment and recycling		- Catalyst – increases reaction ra			
erting old waste metal into		obtaining and processi			
	disposal of produ	raw materials			
nollution from mining					
pollution from processing					
wasto in landfill					
waste in landin					
ha ovnonsivo		Questions to ask:			
use a lot of energy in	How	hat raw materials are needed?			
norting collecting sorting	How	w much energy is needed for the			
at environmental impact of	manufac	cture and packaging of the product?			
uses of a product's lifecycle	What will the product be used for?				
hould aim to reduce all	How	will the product be disposed of?			
ge.					
aining and processing raw					
rials					
ing/packaging the product					
g the product					
osal or recycling of product	using the produ-	ct manufacturing and			

packaging the product

	11. Changes to equilibrium systems (HT)					
forwards as	Effect on	Exothermic reaction – equilibrium				
th products	equilibrium of	shifts left, yield decreases				
tants)	increasing	Endothermic reaction –				
le reactions.	temperature	equilibrium shifts right, yield				
rate of the		increases				
backwards	Effect on	Exothermic reaction – equilibrium				
the	equilibrium of	shifts right, yield increases				
ctants and	decreasing	Endothermic reaction –				
ng.	temperature	equilibrium shifts left, yield				
o dynamic		decreases				
ched.	Effect on	Equilibrium shifts to side with				
vnamic	equilibrium of	fewer gas molecules				
eached.	increasing gas					
⇒ ammonia	pressure					
NH ₃	Effect on	Equilibrium shifts to side with				
othermic	equilibrium of	more gas molecules				
ndustrially:	decreasing gas					
auilibrium	pressure					
ases	Effect on	of products – equilibrium shifts				
shifts left.	equilibrium of	left, yield decreases				
faster	increasing	of reactants – equilibrium shifts				
	concentration	right, yield increases				
eaction rate	Effect on	of products – equilibrium shifts				
	equilibrium of	right, yield increases				
and processing materials	decreasing	of products – equilibrium shifts				
	concentration	left, yield decreases				

Photo D shows how the equilibrium position of a mixture of nitrogen dioxide and dinitrogen tetroxide depends on temperature.

2NO,(g) nitrogen dioxide (brown)

 \neq N₂O₂(g) (forward reaction is exothermic) dinitrogen tetroxide (colourless)

As the temperature is decreased the equilibrium shifts to the right so the colour gets lighter.

This changes brown NO. molecules '@' into colourless N₂O₂ '@' molecules as this is the exothermic direction, which increases the temperature.

