CC10: Electrolytic Processes (Paper 1) CC11: Obtaining and Using Metals (Paper 1) CC12: Reversable Reactions and Equilibria (Paper 1)

Lesson	Objectives Tracker Sheet	Date covered	l know this well	I need to do more work on this
CC10a Electrolysis	 C3.22 Recall that electrolytes are ionic compounds in the molten state or dissolved in water. C3.23 Describe electrolysis as a process in which electrical energy, from a direct current supply, decomposes electrolytes. C3.24 Explain the movement of ions during electrolysis, in which: positively charged cations migrate to the negatively charged anions migrate to the positively charged anode. C3.27 H Write half equations for reactions occurring at the anode and cathode in electrolysis. C3.28 H Explain oxidation and reduction in terms of loss or gain of electrons 			
CC10a Electrolysis of copper sulfate solution – Core Practical	electrons C3.31 Investigate the electrolysis of copper sulfate solution with inert electrodes and copper electrodes.			
CC10b Products from electrolysis	C3.25 Explain the formation of the products in the electrolysis, using inert electrodes, of some electrolytes, including: copper chloride solution sodium chloride solution sodium sulfate solution water acidified with sulfuric acid molten lead bromide (demonstration). C3.26 Predict the products of electrolysis of other binary, ionic compounds in the molten state. C3.30 Explain the formation of the products in the electrolysis of copper sulfate solution, using copper electrodes, and how this electrolysis can be used to purify copper.			

KS4 Science: Electrolytic Processes KS4 Science: Obtaining and Using Metals KS4 Science: Reve<u>rsable Reactions and Equilibr</u>ia

	KS4	Science: Reve	ersable React	tions and Equilib
	C1.52 H Explain why, in a reaction,			
	the mass of product formed is			
	controlled by the mass of the			
	reactant which is not in excess.			
	C1.53 H Deduce the stoichiometry			
	of a reaction from the masses of			
	the reactants and products.			
	-			
	4.1 Deduce the relative reactivity of			
	some metals, by their reactions			
	with water, acids and salt solutions.			
	4.2 H Explain displacement			
	reactions as redox reactions, in			
	terms of gain or loss of electrons			
	4.3 Explain the reactivity series of			
CC11a Reactivity	metals (potassium, sodium,			
CCTTa Reactivity	calcium, magnesium, aluminium,			
	(carbon), zinc, iron, (hydrogen),			
	copper, silver, gold) in terms of the			
	reactivity of the metals with water			
	and dilute acids and that these			
	reactions show the relative			
	tendency of metal atoms to form			
	cations.			
	4.4 Recall that:			
	most metals are extracted from			
	ores found in the Earth's crust			
	unreactive metals are found in the			
	Earth's crust as the uncombined			
	elements.			
	4.7 Explain why the method used			
	to extract a metal from its ore is			
	related to its position in the			
CC11b Ores	reactivity series and the cost of the			
	extraction process, illustrated by:			
	heating with carbon (including iron)			
	electrolysis (including aluminium)			
	(knowledge of the blast furnace is			
	not required).			
	4.8 H Evaluate alternative			
	biological methods of metal			
	extraction (bacterial and			
	phytoextraction).			
	4.2 H Explain displacement			
	reactions as redox reactions, in			
	terms of gain or loss of electrons.			
CC11c Oxidation	4.5 Explain oxidation as the gain of			
	oxygen and reduction as the loss of			
	oxygen.			
and reduction	4.6 Depend that the extraction of			
	4.6 Recall that the extraction of			
	metals involves reduction of ores.			
	4.9 Explain how a metal's relative			
	resistance to oxidation is related to			
	its position in the reactivity series.			
				1

KS4 Science: Electrolytic Processes KS4 Science: Obtaining and Using Metals KS4 Science: Reversable Reactions and Equilibria

	K34	Science. Reve	ersable React	lons and i	<u>2quiibri</u>
CC11d Life cycle assessment and recycling	 4.10 Evaluate the advantages of recycling metals, including economic implications and how recycling can preserve both the environment and the supply of valuable raw materials. 4.11 Describe that a life time assessment for a product involves consideration of the effect on the environment of obtaining the raw materials, manufacturing the product, using the product and disposing of the product when it is no longer useful. 				
	4.12 Evaluate data from a life cycle assessment of a product.				
CC12a Dynamic equilibrium	C4.13 Recall that chemical reactions are reversible, the use of the symbol ≓ in equations and that the direction of some reversible reactions can be altered by changing the reaction conditions C4.14 Explain what is meant by dynamic equilibrium.				
	C4.15 Describe the formation of ammonia as a reversible reaction between nitrogen (extracted from the air) and hydrogen (obtained from natural gas) and that it can reach a dynamic equilibrium.				
	C4.16 Recall the conditions for the Haber process as: a temperature 450°C b pressure 200 atmospheres c iron catalyst. C4.16 Recall the conditions for the Haber process as: a temperature 450°C b pressure 200 atmospheres c iron catalyst.				