

Combined Science - Chemistry

Dissolve

3. Filtration and crystallisation

When a substance mixes with a

CC1-2 Knowledge organiser

Paper

4. Paper chromatography

A method of separating out

separate out.

C1 & 2: States of matter and
separating substances

Sequence

- States of matter 1.
- 2. Mixtures
- 3. Filtration and crystallisation
- Paper chromatography 4.
- 5. Distillation
- Core practical investigating inks 6. (CP7)
- 7. Drinking water

	1. States of matter				
Particle	The tiny pieces that all matter is made				
	from.				
Atom	The smallest independent particle.				
	Everything is made of atoms.				
Molecule	A particle made from two or more				
	atoms bonded together.				
State of	Whether a substance is solid, liquid or				
matter	gas.				
Particle	A theory that uses the idea of				
model	particles to explain the differences				
	between solids, liquids and gases.				
Solid	Particle arrangement: Regular				
	pattern, touching each other.				
	Particle movement: Vibrating around				
	a fixed point.				
Liquid	Particle arrangement: Random,				
	touching each other.				
	Particle movement: Moving around				
Gas	Particle arrangement: Random				
	Particle movement: Moving quickly				
State	Solid to liquid = melting				
changes	Liquid to solid = freezing				
	Liquid to gas = evaporating or boiling				
	Gas to liquid = condensation				
	Solid to gas = sublimation				
	Gas to solid = deposition				
Heating	Temperature rises as you heat a solid,				
curve for a	levels out as it melts, continues rising				
pure	once fully liquid, levels out whilst				
substance	boiling and rises again once fully gas.				

Sta	te Particle di		Arrangement of particles	Movement of particles		
Gas		i 🕒 i	random far apart	fast in all directions		
Liqu	iid	90	random close together	move around each other		
Soli	d		regular close together	vibrate about fixed positions		
2. Mixtures						
	Element	A substance made from only one type of atom.				
	Compound	A substance made from two of more different elements bonded				

together.

Mixture

		together.		
Mel	ting	Mixtures do not melt at a fixed		
poir	nt of	temperature but melt gradually		
mix	tures	over a range of temperatures.		
Неа	ting	The flat sections of the heating		
curv	es of	curves of a pure substance are		
mix	ixtures sloped for a mixture.			
	1	-		
emperature (°C)	The temperature stays constant while the liquid is boiling. The particles are escaping from the liquid to form a gas. gas			
	liquid	0°C		

A substance made of two of more

compounds) mixed but not bonded

substances (elements or

The temperature stays constant while the solid is melting. The substance is still being heated, but the added energy is making the particles break away from solid their fixed arrangement.

Time (minutes)

liquid by breaking down into chromatography mixtures of liquids to show individual particles (atoms or what is in them, by letting molecules). them travel up a piece of Soluble When a substance can be chromatography paper. dissolved by a liquid. Chromatography 1. Draw pencil line on paper Insoluble When a substance can't be method 2. Place sample spot on line dissolved by a liquid. 3. Place paper in solvent, with solvent below pencil line. Filtration A method of separating a mixture 4. Allow solvent to soak up the of a liquid and an insoluble solid paper by passing it through a filter Stop when solvent near top, paper. and mark how far it gets. The solid that gets left behind in Residue Stationary phase The substance the solvent the filter paper. moves through – usually paper The liquid that passes through the Filtrate (Note: technically it is a thin filter paper. layer of water from air that is How filtration The filter paper contains many bound to the paper molecules) tiny holes. The water molecules works Mobile phase The solvent. are small enough to pass through R_f = spot distance / solvent R_f (retardation the holes, the solid particles are factor) distance too big and get trapped. Solution Uses of R_f R_f enables you to identify a A mixture of a solute dissolved in a solvent. substance because for a given solvent and stationary phases, Solvent A liquid that has dissolved a it is unique to each substance. substance, for example water. Uses of To tell between pure and Solute A solid that has been dissolved. chromatography impure substances for example salt. To identify substances by Crystallisation A method of collecting the comparison with known ones dissolved solid from a solution by To identify substances by heating it so that the solvent calculating R_f. evaporates away. Risks of As the solvent boils away, the hot crystallisation solution can spit, so you should lid (to stop wear safety goggles to protect evaporation of solvent) solvent has reached your eyes. this level i ii The different compounds paper water vapour in a sample dissolved to different extents in the filter pape filtrate solvent suspension starting evaporating basin positions of solid residue boiling water the samples filter funnel More soluble compounds dauze are carried up the paper filtrate 0 0 0 X Y Z faster than less soluble solvent ones, so the compounds (e.g. water)

D Laboratory apparatus for (i) filtration and (ii) crystallisation.

Combined Science - Chemistry

	SCHOOL				Спетнізсі у
	5. Distillation	6. Core pract	ical – investigating inks (CP7)		7. Drinking water
Distillation	A method used to collect pure liquid from a solution, such as getting pure water from seawater.	CP7 – Aim CP7 – Distillation set	To separate inks using distillation and chromatography. Place some ink in a conical flask with a side arm and delivery	Potable water Desalination	Water that is safe to drink. Producing pure water from seawater.
Condenser	A glass tube surrounded by a glass jacket containing cold tap water. Used to condense gases back to liquids.	ир	tube attached, place the flask on a tripod above a Bunsen burner. Place a boiling tube in a beaker of ice and place the delivery	Purifying seawater	The seawater is distilled: heating the water to produce water vapour and condensing it back to liquid. Uses lots of energy.
How distillation works	The solution is heated until it is hot enough for the solvent to boil. The solvent is then passed through a cool condenser where it turns back to liquid. The solute does not get hot enough to	CP7 – Run the distillation CP7 –	tube into the boiling tube. Light the Bunsen burner and allow the ink to boil, stop once a few drops of liquid have collected. Pure water collects in the test	Uses of pure water Water	Pure water has to be used when chemists analyse substances to find out what they contain. Tap water contains many dissolved substances that could interfere with this. Water is passed through a
Anti-bumping granules	evaporate and stays where it is. Jagged grains of glass that are added during distillation to prevent violent boiling.	Distillation results	tube because it boils and the cold ice condenses the vapours back to liquid. The ink gets darker because there is less	treatment in the UK	sedimentation tank, to allow sediment to settle out, it is passed through a filtration tower to remove floating particles, chlorine
Fractional distillation	A type of distillation used to separate mixtures of two or more liquids.		water to dilute it. 1. Draw pencil line on paper 2. Place ink spot on line	from	is added to kill bacteria.
How fractional distillation works	The liquid with the lowest boiling point boils first and can be collected, then the next boils and so on.	setup	 Place paper in solvent, with solvent below pencil line. Allow solvent to soak up the paper 	source sedimer	ntation tower drinking water stored in tower
Fractionating column	A tall glass column used during fractional distillation that gives a better separation of the liquids by producing a temperature gradient.	CP7 – Chromatography - calculate Rf	5. Stop when solvent near top, and mark how far it gets. Measure how far each of your spots has moved from the line and how far the solvent has moved. Rf = spot distance / sample distance.		gravel with hor
nti-bumping granules make the liquid more smoothly	cooling water out (a central tube	CP7 – Chromatography results	The ink separates into multiple different spots. The one that moves furthest is most soluble in the water.		
small bubbles of our form on the	istillation flask solution (e.g. salty water) distillate (e.g. pure water)	thermomete anti-bumping granules ink	r delivery tube flask heat ice water		

