C1 \& 2: States of matter and separating substances

Sequence

1. States of matter
2. Mixtures
3. Filtration and crystallisation
4. Paper chromatography
5. Distillation
6. Core practical - investigating inks (CP7)
7. Drinking water

1. States of matter	
Particle	The tiny pieces that all matter is made from.
Atom	The smallest independent particle. Everything is made of atoms.
Molecule	A particle made from two or more atoms bonded together.
State of matter	Whether a substance is solid, liquid or gas.
Particle model	A theory that uses the idea of particles to explain the differences between solids, liquids and gases.
Solid	Particle arrangement: Regular pattern, touching each other. Particle movement: Vibrating around a fixed point.
Liquid	Particle arrangement: Random, touching each other. Particle movement: Moving around
Gas	Particle arrangement: Random Particle movement: Moving quickly
State changes	Solid to liquid = melting Liquid to solid = freezing Liquid to gas = evaporating or boiling Gas to liquid = condensation Solid to gas = sublimation Gas to solid = deposition
Heating curve for a pure substance	Temperature rises as you heat a solid, levels out as it melts, continues rising once fully liquid, levels out whilst boiling and rises again once fully gas.

3. Filtration and crystallisation	
Dissolve	$\begin{array}{l}\text { When a substance mixes with a } \\ \text { liquid by breaking down into } \\ \text { individual particles (atoms or } \\ \text { molecules). }\end{array}$
Soluble	$\begin{array}{l}\text { When a substance can be } \\ \text { dissolved by a liquid. }\end{array}$
Insoluble	$\begin{array}{l}\text { When a substance can't be } \\ \text { dissolved by a liquid. }\end{array}$
Filtration	$\begin{array}{l}\text { A method of separating a mixture } \\ \text { of a liquid and an insoluble solid } \\ \text { by passing it through a filter } \\ \text { paper. }\end{array}$
Residue	$\begin{array}{l}\text { The solid that gets left behind in } \\ \text { the filter paper. }\end{array}$
Filtrate	$\begin{array}{l}\text { The liquid that passes through the } \\ \text { filter paper. }\end{array}$
How filtration	$\begin{array}{l}\text { The filter paper contains many } \\ \text { tiny holes. The water molecules } \\ \text { wore small enough to pass through } \\ \text { the holes, the solid particles are } \\ \text { too big and get trapped. }\end{array}$
Solution	$\begin{array}{l}\text { A mixture of a solute dissolved in } \\ \text { a solvent. }\end{array}$
Solvent	$\begin{array}{l}\text { A liquid that has dissolved a } \\ \text { substance, for example water. }\end{array}$
Crystallisation	$\begin{array}{l}\text { A solid that has been dissolved, } \\ \text { for example salt. }\end{array}$
solution can spit, so you should	
wear safety goggles to protect	
your eyes.	

4. Pap	
Paper chromatography	

Uses of \mathbf{R}_{f}
chromatography A method of separating out mixtures of liquids to show what is in them, by letting them travel up a piece of chromatography paper.
Chromatography 1 1. Draw pencil line on paper method \quad 2. Place sample spot on line 3. Place paper in solvent, with solvent below pencil line. 4. Allow solvent to soak up the paper
5. Stop when solvent near top, and mark how far it gets.
Stationary phase The substance the solvent moves through - usually paper (Note: technically it is a thin layer of water from air that is bound to the paper molecules)

Mobile phase	The solvent.
R_{f} (retardation factor)	$R_{f}=$ spot distance / solvent distance

R_{f} enables you to identify a substance because for a given solvent and stationary phases, it is unique to each substance. - To tell between pure and impure substances

- To identify substances by comparison with known ones - To identify substances by calculating R_{f}.
Id (to stop
evaporation
of solvent)

