B9: Ecosyst	ems and Material Cycles	Random	Estimating the population of	Changes to	If an abiotic factor changes – such	5. I	Parasitism and mutualism
Lesson sequence 1. Ecosystems		sampling	organisms in an area by randomly dropping a quadrat several times, finding the average number of organisms	abiotic factors	as temperature increasing due to global warming – organisms may no longer be well adapted to where they live and may die out.	Parasitism	A feeding relationship in which a parasite feeds off its host, causing harm to the host but (normally) not killing it.
3. Core pra	actors and communities actical – quadrats and		present and scaling up your answer.	4. Bio	tic factors and communities	Examples of parasites	Fleas and leeches sucking blood, tapeworms living in animals'
transect: 4. Biotic fac	s ctors and communities	Population size calculation	 Population size = number of organisms in quadrat x (total 	Biotic factor	A living factor that influences what can live where.		intestines, mistletoe burrowing its roots into tree branches.
5. Parasitis	m and mutualism	2 Core practica	area / quadrat area)	biotic	predators, competing organisms	Mutualism	Organisms that live together in a relationship where both benefit.
7. Preservii 8. Water cy	ng biodiversity ycle	Belt A wa transect a spe	ay to study how the population of ecies changes as you move	Competition	Often two or more different organisms may compete for the	Examples of mutualism	Cleaner fish that swim into sharks mouths to feed without being eaten. Algae that live inside coral
9. Carbon o 10. Nitrogen	cycle n cycle	orga	ugh an area but counting the nnisms in a quadrat at regular rvals.	Effects of	same resource such as food, water or light. Reduced competition when a		polyps gaining shelter and providing food.
Ecosystem	1. Ecosystems An area in which the	CP6 – Key How question as yo	v does the number of daises vary ou move away from the base of	reducing competition	species goes extinct can lead to unpredictable effects on other	6. Effe Biodiversity	ct of humans on biodiversity The number of different species
	interactions between all the living organisms and the all the physical factors forms a stable relationship needing no outproal input	CP6 – Place Collecting base data of da quac	r e a quadrat so it is touching the e of a tree and record the number aisies. Repeat, moving the drat 1 m away each time until it is	Predator- prey cycles	species with some benefiting from reduced predation, and others benefitting. As the number of prey animals increases, the number of predators	Fish farms	living in an area. High biodiversity is good. Farms based in water where fish are farmed in pens to reduce the need to catch them in the
Habitat	A particular area within an	10 m diffe	n away. Repeat with three erent trees.		increase. The predators over- predate the prey leading to a fall in	Effect of fish	wild. The waste produced by the fish
Community	All the organisms living in an ecosystem.	CP6 – Calcu Calculate daisi	ulate the average number of ies 1 m away, 2 m away and so		prey numbers which causes the number of predators to go down	farming on biodiversity	sinks to the sea floor, changing the conditions and harming the
Interdependenc	e The way in which the organisms in an area depend on each other, for food, shelter, protection and so on.	CP6 - The Results you level	number of daisies increases as move away from the tree, and Is out at about 6 or 7 m.	140 -	of prey increases again because fewer are being eaten.	Introduced species	Organisms introduced by humans – intentionally or accidentally – into a new
Population	The members of one particular species within an ecosystem.	3. Abioti Abiotic factor	ic factors and communities A non-living factor that influences what can live where.	120 - () 100 -	Snowshoe hare Canadian lynx	Effect of introduced	Many introduced species upset natural ecosystems by changing
Abundance	The number of members of one species in an ecosystem.	Important T abiotic r	Temperature, light intensity, rainfall, type of landscape, soil	60 (1) 80 (1) 80 (1)		biodiversity	species often lack predators that
Quadrat	A metal square used to help find the number of small organisms living in an area.	factors p Pollutants s a	pH, soil nutrients, pollution. Substances produced by human activities that can poison some or all of the organisms living in an area.			Eutrophicatio	 Fertiliser used on farmland gets washed into lakes and rivers by rain. It causes algae to grow out of control and when the algae
		**Adaptation F to abiotic t factors f	Features of plants and animals that are suited to the abiotic factors where they live.	1040 1033	1000 1010 1000 1000 1000 1013 1323		dies, it sinks to the bottom and rots which uses up the oxygen in the water.

Effect of
eutrophicationWith less oxygen in the water,
many species die, and
biodiversity is reduced.on
biodiversity

7. Preserving biodiversity				
Importance	Areas with high biodiversity			
of	recover more quickly from			
biodiversity	disasters such as floods and			
	droughts. Many plants and			
	animals are useful for new			
	medicines and products.			
Endangered	When a species is at risk of dying			
	out, usually because it has been			
	over-hunted or its habitat has			
	been destroyed.			
Conservation	When an effort is made to			
	protect rare or endangered			
	species or their habitat.			
Importance	Conservation can make the			
of	difference between a species			
conservation	dying out or surviving. It			
	increases biodiversity.			
Reforestation	Planting trees or allowing trees to			
	regrow on old farmland. It			
	increases biodiversity by			
	increasing the range of habitats in			
	an area.			
Captive	Breeding animals in zoos – where			
breeding	they are protected from danger –			
programmes	in order to be able to release			
	them into the wild.			
	8. The water cycle			
Water cvcle	The way in water is continuously			
	moved around different parts of			
	the environment.			
Water cycle	Precipitation, surface run-off			
, stages	and infiltration, evaporation,			
-	condensation.			
Precipitation	Water falls to the ground as			
	rain, snow and hail.			
Surface run-	Water soaks into the ground			
off and	(infiltration) or runs off into			
infiltration	streams and rivers into lakes			
	and oceans.			

EvaporationWater evaporates as water
vapour from oceans, lakes and
rivers.CondensationWater vapour condenses into
tiny droplets to form clouds.DesalinationProducing potable (drinking
water) from salty water, for
example by distillation. Useful in
areas with low rainfall.

	9. Carbon Cycle
Carbon cycle	The way carbon is continuously
	moved between different stores
	in the environment.
Carbon cycle -	Carbon is transferred from the
photosynthesis	carbon dioxide in the air into
	plants.
Carbon cycle -	Carbon is transferred from
feeding	plants into animals, and from
	animals into other animals.
Carbon cycle –	Carbon in waste (urine and
death and	faeces) and dead bodies is
excretion	transferred to decomposers or
	to fossil fuels.
Carbon cycle -	Plants, animals and
respiration	decomposers transfer carbon
	back to the air as carbon dioxide
	by respiration.
Carbon cycle -	Humans transfer carbon back to
combustion	the air by burning fossil fuels.

10. Nitrogen cycle				
mportance of	Nitrogen is used to make amino			
itrogen	acids which are used to make			
	the proteins needed for growth			
	and repair.			
litrogen cycle	The way nitrogen is			
	continuously moved between			
	different stores in the			
	environment.			
litrogen cycle	Nitrogen in the air is converted			
nitrogen	to nitrates in the soil by			
ixation	nitrogen fixing bacteria.			
litrogen cycle	Plants absorb nitrates from the			
plants	soil and convert them into			
	amino acids and proteins.			
litrogen cycle	Animals eat plants (and other			
feeding	animas) transferring nitrogen			
	into them in the form of			
	protein.			
litrogen cycle	Nitrogen in the form of urea			
death and	and protein is transferred to			
xcretion	decomposers in the soil by			
	death and excretion.			
litrogen cycle	Decomposers convert nitrogen			
decomposers	in urea and proteins into			
	nitrates.			

