

Combined Science - Biology

CB8 Knowledge organiser

B8: Exchange and transport

Lesson sequence

- 1. Efficient exchange and transport
- 2. The circulatory system
- 3. The heart
- 4. Respiration
- 5. Core practical respiration rates

1. Effic	cient exchange and transport	DT
Substances	Oxygen, glucose, nutrients.	of g
needed by		
body		
Waste	Carbon dioxide, urea.	
products		Circu
Transport	Moving substances around the body.	syste
Exchange	Moving substances in and out of our cells.	The bloo
Diffusion	The way substances move in and	
	out of cells – they diffuse from	Arte
	high to low concentration.	
Increasing	High surface area, thin surfaces	
diffusion		
Surface	Surface area / volume	
area:volume		
ratio		
Importance	A higher ratio means there is more	Capi
of	surface area, so substances can	
SA:volume	diffuse in and out of cells more	
ratio	quickly.	
Alveoli	Role: Air sacs in lungs where CO ₂	
	and O_2 are exchanged	
	Adaptations: millions of them	Vein
	gives a high surface area, good	
	blood supply maintains a high	
	concentration gradient, thin walls	
	increases diffusion	

	2. Circulatory system		
Circulatory	Your heart, arteries, capillaries		
system	and veins which work together to		
	pump blood around the body.		
The role of	To carry oxygen and nutrients to		
blood	our cells and take waste products		
	away.		
Arteries	*Role: Carry blood away from		
	the heart		
	**Adaptations: Thick muscle		
	walls to withstand the high		
	pressure, elastic fibres to stretch		
	as pressure increases during a		
	pulse.		
Capillaries	*Role: To exchange nutrients and		
	waste between the blood and		
	cells.		
	**Adaptations: Thin walls to		
	increase diffusion, many many of		
	them to give a high surface area.		
Veins	*Role: To carry blood towards		
	the heart		
	**Adaptations: Thin walls		
	because pressure is low, wide		
	because blood is moving slowly,		
	valves so blood flows right way.		
Components	Plasma, red blood cells, white		
of blood	blood cells, platelets.		

Plasma	A straw-coloured liquid that
	carries the blood cells and
	dissolved substances such as
	urea, carbon dioxide and
	glucose.
Red blood	Contain haemoglobin to carry
cells	oxygen around the body.
(erythrocytes)	
White blood	Fight pathogens (infections).
cells	Many types including:
	Phagocytes – engulf ('eat'
	pathogens.
	Lymphocytes – produce
	antibodies to attack pathogens.
Platelets	Small fragments of cells that help
	the blood to clot when you are
	cut.

Ventricles	The two chambers at the bottom
	of the heart
	Right: pumps blood to lungs
	Left: pumps blood to body
Valves	Prevent blood from flowing from
	the ventricles back to the atria
Vena cava	Carries blood from the body into
	the right atrium.
Pulmonary	Carries blood from the right
artery	ventricle to the lungs.
Pulmonary	Carries blood from the lungs to
vein	the left atrium.
Aorta	Carries blood from the left
	ventricle to the body.
Cardiac	Cardiac output = stroke volume x
output	heart rate
Increasing	Stronger heart beats (higher
cardiac	stroke volume), higher heat rate.
output	

A the human circulatory system

3. The heart		
Heart	A double pump that pumps blood:	
	Right side: to lungs	
	Left side: around the whole body	
Atria	The two chambers at the top of	
(atriums)	the heart.	
	Right: receives blood from body	
	Left: receives blood from lungs	

4. Respiration		
Respiration	An exothermic reaction carried	
	out in all living cells to release	
	energy from food molecules such	
	as glucose.	
Aerobic	The main type of respiration,	
respiration	which takes place in mitochondria	
	and uses oxygen.	
Aerobic	glucose + oxygen → carbon	
equation	dioxide + water	
Anaerobic	A form of respiration that releases	
respiration	less energy but extremely quickly.	
	Takes place in the cytoplasm.	
Anaerobic	Glucose → lactic acid	
equation		
Role of	To provide an energy boost during	
aerobic	intense exercise when aerobic	
respiration	respiration alone isn't enough.	
Lactic acid	A poison that builds up in muscles	
	during anaerobic respiration	
	leading to muscle tiredness and	
	cramp.	
Excess post-	We continue to breath heavily	
exercise	and have a high heart rate after	
oxygen	exercise to get lots of oxygen to	
consumption	the muscles to oxidise harmful	
	lactic acid to CO_2 and H_2O .	

5. Core practical – rate of respiration (CP5)	
CP5 – Key	How does temperature affect the
question	rate of respiration in small
	animals?
CP5 - Set up	Place some soda lime (absorbs
the	CO_2) into the test tube put a
respirometer	protective layer of cotton wool
	over it, add ten maggots, insert in
	bung with capillary tube and put
	in water bath to adjust for 5 mins.
CP5 - Run	Dab the open end of the capillary
the	tube with red food colouring and
respiration	start the stopwatch.
experiment	

CP5 - Record	Every five minutes for fifteen
results	minutes, measure the distance
	travelled by the food colouring.
CP5 - Vary	Repeat the experiment in water
the	baths set to different
temperature	temperatures.
CP5 - Results	The higher the temperature, the
	faster the animas respire.

