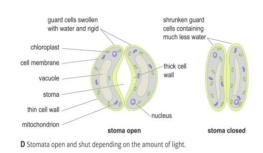
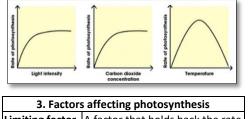

Combined Science - Biology


CB6 Knowledge organiser

B6: Plants

- Lesson sequence
- 1. Photosynthesis
- 2. Leaves
- 3. Factors affecting photosynthesis
- 4. Core practical effect of light intensity on photosynthesis
- 5. Roots
- 6. Transpiration and translocation

:	1. Photosynthesis
Photosynthesis How plants produce glucose	
	using the energy from light.
Photosynthesis	Carbon dioxide + water $ ightarrow$
equation	glucose + oxygen
Chloroplast	Part of a plant cell where
	photosynthesis happens.
Chlorophyll	A green pigment that enables
	photosynthesis by trapping the
	energy in light.
Forming starch	As soon as they are made,
	glucose molecules are joined
	together into long chains to
	form starch.
At night	Starch is converted into a sugar
	called sucrose which is easy to
	move around the plant.
Uses of	Sucrose is converted into:
sucrose	- Glucose for respiration
	 Starch for storage
	 Other molecules for growth
Biomass	The total mass of materials in
	an organism (except water).
	Photosynthesis is the main
	source of biomass.



	2. Leaves	
Job of	To conduct as much photosynthesis	
leaves	as possible as quickly as possible.	
Leaf	To do more photosynthesis, leaves	
adaptations	have: a large surface area, a waxy	
	cuticle, palisade cells, a spongy	
	layer, stomata.	
Large	Allows the leaf to absorb more	
surface	light.	
area		
Waxy	A waxy coating that stops water	
cuticle	evaporating from the leaf.	
Palisade	Tall cells in a leaf with many	
cells	chloroplasts for lots of	
	photosynthesis.	
Spongy	A layer of cells with lots of gaps	
layer	that allows gases to move around	
	inside the leaf.	
Stomata	Holes in the bottom of the leaf that	
(singular =	allow carbon dioxide in and oxygen	
stoma)	and water vapour out.	
Stomata	Each stoma is surrounded by two	
structure	cells called guard cells that can	
	swell to open it or shrink to close it.	
How	During the day, the stomata open	
stomata	to allow gas exchange. At night the	
work	stomata close. Stomata also close	
	during dry spells to stop water loss.	

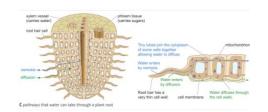
and light intensity
Tempera and photosyn
Inverse s

Carbon dioxide	To start with, increasing them
and light	will increase the rate of
intensity	photosynthesis because they
	are limiting. Eventually
	increasing them further has no
	effect as they are no longer
	limiting.
Temperature	Increasing temperature towards
and	the optimum increases the rate
photosynthesis	as particles move faster and
	collide more. Increasing past
	the optimum decreases rate as
	enzymes denature.
Inverse square	$I = \frac{I_{orig} \times d_{orig}^2}{I_{orig} \times d_{orig}^2}$
law	$I_{new} = \frac{orig}{i^2}$
	d_{new}^2

5. Factors affecting photosynthesis	
A factor that holds back the rate	
of photosynthesis when in short	
supply.	
Carbon dioxide concentration,	
light intensity, temperature.	
The line slopes up when the	
factor is limiting, the line levels	
out when the factor is not	
limiting.	

 ${\bf C}$ measuring the rate of photosynthesis in pondweed

4. Core practical – effect of light intensity on photosynthesis (CP4)	
CP4 – Key	How does light intensity affect the
question	rate of photosynthesis?



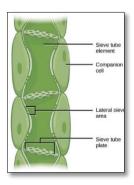
Combined Science - Biology

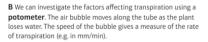
CP4 - Set	Place some pondweed in a beaker of	
up	water with a glass funnel over it and	
equipment	place it 10 cm away from a lamp and	
	wait three minutes for it to settle.	
СР4 -	Count the number of bubbles	
Recording	produced in a minute.	
results		
CP4 - Vary	Repeat the experiment lowering the	
the light	light intensity by moving the lamp	
intensity	10 cm further away each time until	
	it is 50 cm away.	
СР4 -	As the light intensity decreases, the	
Results	number of bubbles per minute	
	decreases because the rate of	
	photosynthesis decreases.	

5. Roots	
Role of	To absorb water and nutrients from
roots	the soil.
Root hair	Role: To quickly absorb water and
cells	minerals from soil
	Adaptations: A long hair which
	increases their surface area, thins
	cell walls to ease water absorption.
Movement	Water enters roots by diffusion and
of water	osmosis and travels to the xylem in
	the centre.
Diffusion	Water diffuses along the cell walls
in roots	around the outside of each cell until
	it reaches the xylem.
Osmosis in	Water travels from cell to cell across
roots	cell membranes by osmosis until it
	reaches the xylem.
Minerals	Plants absorb minerals from soil
in the soil	such as nitrates, phosphates and
	potassium.
Absorbing	Plants absorb minerals by active
minerals	transport because their
	concentration is low.

Xylem cells	Role: To carry water from the
	roots to the leaves.
	Adaptations: Hollow to let
	water pass, no walls between
	neighbours to allow water
	through, rings of lignin to make
	them strong.
Factors	Air movement (wind), dryer air
increasing	(low humidity), higher
transpiration	temperatures
Translocation	The movement of sucrose
	(sugar) around a plant through
	the phloem.
Phloem	Tissue that transports sucrose
	around plants, made of sieve
	tubes and companion cells.
Sieve tubes	Cells in phloem with a large
	channel running through them
	to carry sucrose solution.
Companion	Cells in phloem that sit next to
cells	the sieve tubes and pump

6. Transpiration and translocation		
Transpiration	The movement of water into a	
	plant's roots, up its stem and	
	evaporating out of the leaves.	
Xylem	Hollow tubes that carry water	
	from the roots, up the stem to	
	the leaves.	




Holes in the ends of the cell walls allow liquids to her from one sieve cell to the next. The very small amount of cytoplasm (and no rough the central channel. D phicem adaptations pore through which sucrose solution can be pumped

mitochondrion

- companion cell

vacuole

air bubble

capillary tube with scale

reservoir for pushing air bubble back to right-hand end of capillary tube

-rubber stopper