Year 8 Topic 6 - Representations: from clay to silicon

Lesson	Can you?
1 Across time and space	List examples of representations Recall that representations are used to store, communicate, and process information Provide examples of how different representations are appropriate for different tasks
2 Lights and drums	Recall that characters can be represented as sequences of symbols and list examples of character coding schemes Measure the length of a representation as the number of symbols that it contains Provide examples of how symbols are carried on physical media
3 Binary digits	Explain what binary digits (bits) are, in terms of familiar symbols such as digits or letters Measure the size or length of a sequence of bits as the number of binary digits that it contains
4 Numbers in binary	Describe how natural numbers are represented as sequences of binary digits Convert a decimal number to binary and vice versa
5 Large quantities	Convert between different units and multiples of representation size Provide examples of the different ways that binary digits are physically represented in digital devices
$\begin{aligned} & 6 \text { Turing's } \\ & \text { mug } \end{aligned}$	Apply all the skills covered in this unit

Useful websites

- www.scratch.mit.edu
- www.en.wikipedia.org

■ www.teachinglondoncomputing.org/lego-braille

- www.csunplugged.org/en

■ www.csfieldguide.org.nz/en
■ www.archive.org/details/advancementofl00baco/page/256

- www.curriculum.code.org
- www.cs4fn.org
www.denninginstitute.com/pjd/GP/GP-site/welcome.html
- www.futurelearn.com/courses/how-computers-work

6 Turing’s mug

Apply all the skills covered in this unit

KNOWLEDGE ORGANISER
Key Stage 3 - COMPUTING

Binary Value					Decimal Representation		Decimal Value
	$8 \quad 4 \quad 2 \quad 1$	0					
0	0	0	0	$0+0+0+0$	1		
0	0	0	1	$0+0+0+1$	2		
0	0	1	0	$0+0+2+0$	3		
0	0	1	1	$0+0+2+1$	4		
0	1	0	0	$0+4+0+0$	5		
0	1	0	1	$0+4+0+1$	6		
0	1	1	0	$0+4+2+0$	7		
0	1	1	1	$0+4+2+1$	8		
1	0	0	0	$8+0+0+0$	9		
1	0	0	1	$8+0+0+1$	10		
1	0	1	0	$8+0+2+0$			

Binary is a number system that only uses two digits: 1 and 0 . All information that is processed by a computer is in the form of a sequence of 1 s and 0 s . Therefore, all data that we want a computer to process needs to be converted into binary.

\qquad

Computer manufacturers agreed to use one code called the ASCII (American Standard Code for Information Interchange). ASCII is an 8-bit code. That is, it uses eight bits to represent a letter or a punctuation mark.

Dec	Binary	Char	Dec	Binary	Char	Dec	Binary
033	00100001	A	065	01000001	a	097	01100001
034	00100010	B	066	01000010	b	098	01100010
035	00100011	C	067	01000011	c	099	01100011

