Topic: Simultaneous Equations

Topic/Skill	Definition/Tips	Example
1.	A set of two or more equations , each	2x + y = 7
Simultaneous Equations	involving two or more variables (letters).	3x - y = 8
	The solutions to simultaneous equations	x = 3
	satisfy both/all of the equations.	y = 1
2. Variable	A symbol , usually a letter , which	y = 1 In the equation $x + 2 = 5$, x is the
	represents a number which is usually	variable.
	unknown.	
3. Coefficient	A number used to multiply a variable.	6z
	It is the number that comes before/in front	6 is the coefficient
	of a letter.	z is the variable
4. Solving	1. Balance the coefficients of one of the	5x + 2y = 9
Simultaneous	variables.	10x + 3y = 16
Equations (by	2. Eliminate this variable by adding or	Multiply the first equation by 2.
Elimination)	subtracting the equations (Same Sign Subtract, Different Sign Add)	10x + 4y = 10
	3. Solve the linear equation you get using	10x + 4y = 18 $10x + 3y = 16$
	the other variable.	Same Sign Subtract ($+10x$ on both)
	4. Substitute the value you found back into	y = 2
	one of the previous equations.	y = z
	5. Solve the equation you get.	Substitute $y = 2$ in to equation.
	6. Check that the two values you get satisfy	Substitute $y = 2$ in to equation.
	both of the original equations.	$5x + 2 \times 2 = 9$
		5x + 4 = 9
		5x = 5
		x = 1
		Solution: $x = 1, y = 2$
5. Solving	1. Rearrange one of the equations into the	y - 2x = 3
Simultaneous	form $y = \dots$ or $x = \dots$	3x + 4y = 1
Equations (by	2. Substitute the right-hand side of the	
Substitution)	rearranged equation into the other equation. 3. Expand and solve this equation.	Rearrange: $y - 2x = 3 \rightarrow y = 2x + 3$
	4. Substitute the value into the $y =$ or	Substitute: $3x + 4(2x + 3) = 1$
	x = equation.	Substitute. $3\lambda + 4(2\lambda + 3) = 1$
	5. Check that the two values you get	Solve: $3x + 8x + 12 = 1$
	satisfy both of the original equations.	11x = -11
)	x = -1
		Substitute: $y = 2 \times -1 + 3$
		y = 1 Solution: $x = -1, y = 1$
		Solution. $\lambda = 1, y = 1$

6. Solving Simultaneous Equations (Graphically)	Draw the graphs of the two equations. The solutions will be where the lines meet. The solution can be written as a coordinate.	y = 2x - 1 $y = 5 - x and y = 2x - 1.$
		They meet at the point with coordinates $(2,3)$ so the answer is $x = 2$ and $y = 3$
7. Solving Linear and Quadratic Simultaneous Equations	Method 1: If both equations are in the same form (eg. Both $y =$): 1. Set the equations equal to each other . 2. Rearrange to make the equation equal to zero . 3. Solve the quadratic equation. 4. Substitute the values back in to one of the equations. Method 2: If the equations are not in the same form: 1. Rearrange the linear equation into the form $y =$ or $x =$ 2. Substitute in to the quadratic equation. 3. Rearrange to make the equation equal to zero . 4. Solve the quadratic equation. 5. Substitute the values back in to one of the equations. You should get two pairs of solutions (two values for x , two values for y .) Graphically, you should have two points of intersection .	Example 1 Solve $y = x^{2} - 2x - 5 \text{ and } y = x - 1$ $x^{2} - 2x - 5 = x - 1$ $x^{2} - 3x - 4 = 0$ $(x - 4)(x + 1) = 0$ $x = 4 \text{ and } x = -1$ $y = 4 - 1 = 3 \text{ and}$ $y = -1 - 1 = -2$ Answers: (4,3) and (-1,-2) $\frac{\text{Example } 2}{\text{Solve } x^{2} + y^{2}} = 5 \text{ and } x + y = 3$ $x = 3 - y$ $(3 - y)^{2} + y^{2} = 5$ $9 - 6y + y^{2} + y^{2} = 5$ $2y^{2} - 6y + 4 = 0$ $y^{2} - 3y + 2 = 0$ $(y - 1)(y - 2) = 0$ $y = 1 \text{ and } y = 2$ $x = 3 - 1 = 2 \text{ and } x = 3 - 2 = 1$
		Answers: (2,1) and (1,2)