Topic: Representing Data | Topic/Skill | Definition/Tips | Example | | | | |--------------|---|--|-------------------------------------|---------------------------|--| | 1. Frequency | A record of how often each value in a set | Number of marks | Tally marks | Frequency | | | Table | of data occurs. | 1 | JH 11 | 7 | | | | | 2 | 1111 | 5 | | | | | 3 | JHT 1 | 6 | | | | | 4 | 1111 | 5 | | | | | 5
Total | III | 3
26 | | | 2. Bar Chart | D (1) | Total | | 20 | | | 2. Bai Chait | Represents data as vertical blocks. $x - axis$ shows the type of data $y - axis$ shows the frequency for each | 14
12-
10-
8- | | | | | | type of data Each bar should be the same width There should be gaps between each bar Remember to label each axis. | Erednency | 1 2 3 | 4 | | | | | Number of pets owned | | | | | 3. Types of | Compound/Composite Bar Charts show | | lron | | | | Bar Chart | data stacked on top of each other. | Carbon Aluminum Weight (gm) A0 A0 A B Sample | | | | | | Comparative/Dual Bar Charts show data side by side. | 30 cm 20 Jan Fet | o Mar Apr May
Month
Bar Chart | Key:
London
Bristol | | | 4. Pie Chart | Used for showing how data breaks down | | | | | | | into its constituent parts. When drawing a pie chart, divide 360° by the total frequency. This will tell you how many degrees to use for the frequency of each category. | Tennis 40° Football 144° Hockey 80° Netball | | | | | | Remember to label the category that each sector in the pie chart represents. | If there are 40 people in a survey, then each person will be worth 360÷40=9° of the pie chart. | | | | | 5. Pictogram | Uses pictures or symbols to show the value of the data. A pictogram must have a key. | Black A A A A A A A A A A A A A A A A A A A | | | |---------------------------|---|---|--|--| | 6. Line Graph | A graph that uses points connected by straight lines to show how data changes in values. | Others | | | | | This can be used for time series data , which is a series of data points spaced over uniform time intervals in time order . | 1 2 3 4 5 6 7 8 9 | | | | 7. Two Way
Tables | A table that organises data around two categories. Fill out the information step by step using the information given. | Question: Complete the 2 way table below. | | | | | Make sure all the totals add up for all columns and rows. | Total 16 84 100 Answer: Step 2, fill out the remaining parts Left Handed Right Handed Total Boys 10 48 58 Girls 6 36 42 Total 16 84 100 | | | | 8. Box Plots | The minimum, lower quartile, median, upper quartile and maximum are shown on a box plot. | Students sit a maths test. The highest score is 19, the lowest score is 8, the median is 14, the lower quartile is 10 and the upper quartile is 17. Draw a | | | | | A box plot can be drawn independently or from a cumulative frequency diagram. | box plot to represent this information. | | | | 9. Comparing
Box Plots | Write two sentences. 1. Compare the averages using the medians for two sets of data. 2. Compare the spread of the data using the range or IQR for two sets of data. | 'On average, students in class A were more successful on the test than class B because their median score was higher.' 'Students in class B were more consistent than class A in their test | | | | | The smaller the range/IQR, the more consistent the data. You must compare box plots in the context of the problem. | scores as their IQR was smaller.' | | |