
Topic/Skill	Definition/Tips	Example
1. Direct	If two quantities are in direct proportion, as	у ↑
Proportion	one increases, the other increases by the same percentage.	y = kx
	If y is directly proportional to x, this can be written as $y \propto x$	*
	An equation of the form $y = kx$ represents direct proportion, where k is the constant of proportionality.	
2. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage.	$y = \frac{k}{x}$
	If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$	x
	An equation of the form $y = \frac{k}{x}$ represents inverse proportion.	↓
3. Using	Direct: $y = kx$ or $y \propto x$	p is directly proportional to q.
proportionality formulae	Inverse: $y = \frac{k}{x}$ or $y \propto \frac{1}{x}$	When $p = 12$, $q = 4$. Find p when $q = 20$.
	 Solve to find k using the pair of values in the question. Rewrite the equation using the k you have just found. 	1. $p = kq$ 12 = k x 4 so k = 3
	3. Substitute the other given value from the question in to the equation to find the	2. $p = 3q$ 3. $p = 3 \times 20 = 60$, so $p = 60$
1 Direct	missing value.	Direct Proportion Graphs
4. Direct Proportion with powers	Graphs showing direct proportion can be written in the form $y = kx^n$ Direct proportion graphs will always start at the origin.	$y = 3x^{2}$ $y = 2x$ $y = 0.5x^{5}$
5. Inverse Proportion with powers	Graphs showing inverse proportion can be written in the form $y = \frac{k}{x^n}$ Inverse proportion graphs will never start at the origin.	Inverse Proportion Graphs $y = \frac{2}{x}$ $y = \frac{3}{x^2}$ $y = \frac{0.5}{x^2}$

