Topic: Histograms and Cumulative Frequency

Topic/Skill	Definition/Tips		Example
1. Histograms	A visual way to display frequency	data	Frequency
	using bars.		Density
	Bars can be unequal in width .		(FD)
	Dars can be unequal in wittin.		8÷5=1.6
	Histograms show frequency density on the		$6 \div 20 = 0.3$
	y-axis, not frequency.		15÷15=1
	Fre	quency	5÷25=0.2
	Fraguency Dencity —	s Width	
	Cius	s willi	in land
	Height(cm) Frequency		-1
	0 < h ≤ 10 8		
	10 < h ≤ 30 6		
	30 < h ≤ 45 15		
	45 < h ≤ 70 5		0 5 to 5 33 55 55 65 53 55 66 65 10
2. Interpreting	The area of the bar is proportional	l to the	A histogram shows information about
Histograms	frequency of that class interval.		the heights of a number of plants. 4
	Emagaion au — Emag Domaita		plants were less than 5cm tall. Find the number of plants more than 5cm tall.
	Frequency = Freq Density × Class Width		number of plants more than 3cm tan.
			-2 FD
			0 6 10 15 20 25 30
			Height (cm)
			Above 5cm:
			$1.2 \times 10 + 2.4 \times 15 = 12 + 36 = 48$
3. Cumulative	Cumulative Frequency is a runni	ng total.	Cumulative Frequency
Frequency			15
	Age Frequer	icy	15 + 35 = 50
	0 < a ≤ 10 15		50 + 10 = 60
	10 < a ≤ 40 35		·
	40 < a ≤ 50 10		
4. Cumulative	A cumulative frequency diagram		40-
Frequency	that goes up. It looks a little like a		30-
Diagram	stretched-out S shape .		CF 20 –
	Plot the cumulative frequencies at the end-		10 -
	point of each interval.		0
			10 20 30 40 50 Height

5. Quartiles from Cumulative Frequency Diagram	Lower Quartile (Q1): 25% of the data is less than the lower quartile. Median (Q2): 50% of the data is less than the median. Upper Quartile (Q3): 75% of the data is less than the upper quartile. Interquartile Range (IQR): represents the middle 50% of the data.	40- 30 - CF 20 - Value of UQ taken from 33rd = 37 Value of Medidan taken from 22nd = 30 Value of LQ taken from 11th = 18 10 20 30 40 50 Height IQR = 37 - 18 = 19
6. Hypothesis	A statement that might be true, which can be tested.	Hypothesis: 'Large dogs are better at catching tennis balls than small dogs'. We can test this hypothesis by having hundreds of different sized dogs try to catch tennis balls.