Topic: Probability (Trees and Venns)

Topic/Skill	Definition/Tips	Example
1. Tree	Tree diagrams show all the possible	Bag A Bag B
Diagrams	outcomes of an event and calculate their	$\frac{1}{r}$ red
	probabilities.	1 3
		red 2
	All branches must add up to 1 when	black
	adding downwards.	3 1
	This is because the probability of	3red
	something not happening is 1 minus the	black
	probability that it does happen.	2 black
		3
	Multiply going across a tree diagram.	
	Add going down a tree diagram.	
2. Independent	The outcome of a previous event does not	An example of independent events
Events	influence/affect the outcome of a second	could be <u>replacing</u> a counter in a bag
	event.	after picking it.
3. Dependent	The outcome of a previous event does	An example of dependent events could
Events	influence/affect the outcome of a second	be not replacing a counter in a bag after
	event.	picking it.
		'Without replacement'
4. Probability	P(A) refers to the probability that event A	P(Red Queen) refers to the probability
Notation	will occur.	of picking a Red Queen from a pack of
		cards.
	P(A') refers to the probability that event	P(Blue') refers to the probability that
	A will <u>not</u> occur.	you do not pick Blue.
		DODI I WELL I DO CONTROL
	$P(A \cup B)$ refers to the probability that	P(Blonde ∪ Right Handed) refers to the
	event A <u>or</u> B <u>or</u> both will occur.	probability that you pick someone who
		is Blonde or Right Handed or both.
	D(A O D) refers to the probability that	D(Dlanda O Dight Handad) wafara to the
	$P(A \cap B)$ refers to the probability that	P(Blonde ∩ Right Handed) refers to the
	both events A and B will occur.	probability that you pick someone who is both Blonde and Right Handed.
5. Venn	A Venn Diagram shows the relationship	A \cup B A \cap B
Diagrams	between a group of different things and	$A \longrightarrow B$
Diagrams	how they overlap.	
	now they overlap.	
	You may be asked to shade Venn Diagrams	
	as shown below and to the right.	$(A \cap B)'$ $(A \cup B)'$
	as shown below und to the right.	A B A B
	$A \cup B$ $A \cap B$	
	$A \longrightarrow B \subseteq A \longrightarrow B \subseteq S$	
	The Union The Intersection	
	'A or B or Both' 'A and B'	

	1	$A' \cap B$
		$A \cup B'$ $A \cup B'$
6. Venn	€ means 'element of a set' (a value in the	Set A is the even numbers less than 10.
Diagram Notation	set) { } means the collection of values in the	$A = \{2, 4, 6, 8\}$
Notation	set.	Set B is the prime numbers less than
	ξ means the 'universal set' (all the values	10.
	to consider in the question)	$B = \{2, 3, 5, 7\}$
	A' means 'not in set A' (called	$A \cup B = \{2, 3, 4, 5, 6, 7, 8\}$
	complement)	$A \cap B = \{2\}$
	A ∪ B means 'A or B or both' (called	
	Union)	
	A ∩ B means 'A and B (called Intersection)	
7. AND rule	When two events, A and B, are	What is the probability of rolling a 4
for Probability	independent:	and flipping a Tails?
	$P(A \text{ and } B) = P(A) \times P(B)$	$P(4 \text{ and } Tails) = P(4) \times P(Tails)$ $= \frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$
8. OR rule for	When two events, A and B, are mutually	What is the probability of rolling a 2 or
Probability	exclusive:	rolling a 5?
	P(A or B) = P(A) + P(B)	$P(2 \text{ or } 5) = P(2) + P(5)$ $= \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$
9. Conditional	The probability of an event A happening,	1st Bead 2nd Bead
Probability	given that event B has already happened.	3/8 Red
	With conditional probability, check if the	Red
	numbers on the second branches of a tree	$\frac{4}{9}$ Red 5 Green
	diagram changes. For example, if you have	9 Ked 5/8 Green
	4 red beads in a bag of 9 beads and pick a red bead on the first pick, then there will be	$\frac{4}{8}$ Red
	3 red beads left out of 8 beads on the	Green 8 Red
	second pick.	
		4/8 Green