Topic: Accuracy

Topic/Skill	Definition/Tips	Example
1. Place Value	The value of where a digit is within a	In 726, the value of the 2 is 20, as it is
	number.	in the 'tens' column.
2. Place Value	The names of the columns that determine	PLACE VALUE CHART
Columns	the value of each digit.	ousand addrs ousand
	The 'ones' column is also known as the	Millions Hundred Thousands Ten Thousands Thousands Hundreds Tens Ones Ones Ones Decimal Point Tens Hundredths Thousandths Ten-Thousandths Millionths Millionths
	'units' column.	Millions Hundred Ten Thou Thousan Hundred Tents Decimal Tenths Hundred Ten-Thou Millionth
3. Rounding	To make a number simpler but keep its	74 rounded to the nearest ten is 70,
U	value close to what it was.	because 74 is closer to 70 than 80.
	If the digit to the right of the rounding	152,879 rounded to the nearest
	digit is less than 5, round down .	thousand is 153,000.
	If the digit to the right of the rounding	ulousalid is 155,000.
4. Decimal	digit is 5 or more, round up .	In the number 0.272, the 7 is in the
4. Decimal Place	The position of a digit to the right of a decimal point .	In the number 0.372, the 7 is in the
riace	decimal point.	second decimal place.
		0.372 rounded to two decimal places is
		0.37, because the 2 tells us to round
		down.
		Careful with money - don't write £27.4,
		instead write £27.40
5. Significant	The significant figures of a number are the	In the number 0.00821, the first
Figure	digits which carry meaning (ie. are	significant figure is the 8.
	significant) to the size of the number.	
		In the number 2.740, the 0 is not a
	The first significant figure of a number	significant figure.
	cannot be zero.	
	T 1 1 1 1 1 1 1	0.00821 rounded to 2 significant figures
	In a number with a decimal, trailing zeros	is 0.0082.
	are not significant.	19357 rounded to 3 significant figures
		is 19400. We need to include the two
		zeros at the end to keep the digits in the
		same place value columns.
6. Truncation	A method of approximating a decimal	3.14159265 can be truncated to
o. muneution	number by dropping all decimal places	3.1415 (note that if it had been
	past a certain point without rounding .	rounded, it would become 3.1416)
7. Error	A range of values that a number could	0.6 has been rounded to 1 decimal
Interval	have taken before being rounded or	place.
	truncated.	
		The error interval is:
	An error interval is written using	
	inequalities, with a lower bound and an	$0.55 \le x < 0.65$
	upper bound.	
		The lower bound is 0.55
		The upper bound is 0.65

	Note that the lower bound inequality can be 'equal to', but the upper bound cannot be 'equal to'.	
8. Estimate	To find something close to the correct answer .	An estimate for the height of a man is 1.8 metres.
9. Approximation	 When using approximations to estimate the solution to a calculation, round each number in the calculation to 1 significant figure. ≈ means 'approximately equal to' 	$\frac{348 + 692}{0.526} \approx \frac{300 + 700}{0.5} = 2000$ 'Note that dividing by 0.5 is the same as multiplying by 2'
10. Rational Number	A number of the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$. A number that cannot be written in this form is called an 'irrational' number	$\frac{4}{9}$, 6, $-\frac{1}{3}$, $\sqrt{25}$ are examples of rational numbers. π , $\sqrt{2}$ are examples of an irrational numbers.
11. Surd	The irrational number that is a root of a positive integer , whose value cannot be determined exactly. Surds have infinite non-recurring decimals .	$\sqrt{2}$ is a surd because it is a root which cannot be determined exactly. $\sqrt{2} = 1.41421356$ which never repeats.
12. Rules of Surds	$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ $a\sqrt{c} \pm b\sqrt{c} = (a \pm b)\sqrt{c}$ $\sqrt{a} \times \sqrt{a} = a$	$\sqrt{48} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$ $\sqrt{\frac{25}{36}} = \frac{\sqrt{25}}{\sqrt{36}} = \frac{5}{6}$ $2\sqrt{5} + 7\sqrt{5} = 9\sqrt{5}$ $\sqrt{7} \times \sqrt{7} = 7$
13. Rationalise a Denominator	The process of rewriting a fraction so that the denominator contains only rational numbers .	$\frac{\sqrt{7} \times \sqrt{7} = 7}{\frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}}$ $\frac{6}{3 + \sqrt{7}} = \frac{6(3 - \sqrt{7})}{(3 + \sqrt{7})(3 - \sqrt{7})}$ $= \frac{18 - 6\sqrt{7}}{9 - 7}$ $= \frac{18 - 6\sqrt{7}}{2} = 9 - 3\sqrt{7}$